

BinX - The Binary XML Description Language

Project Title: OGSA-DAI GridServe

Document Title: BinX - The Binary XML Description Language

Document Identifier: EPCC-GDS-WP5-BinX v0.1

Distribution Classification: Commercial In Confidence

Authorship: Martin Westhead

Approval List: EPCC: Rob Baxter

Distribution List:
 Unrestricted

Document History:
Personnel Date Summary Version
MDW 13/04/2002 First draft 0.1

EPCC-GDS-WP5-BinX v0.1 Unrestricted 2

Contents

Contents... 2
1 Introduction ... 4

1.1 Motivation ... 4
1.1.1 Related work.. 5

1.2 BinX .. 5
1.2.1 Current status... 7

1.3 JAJA .. 8
1.4 Self describing files ... 8
1.5 Future directions.. 8
1.6 Acknowledgements ... 9
1.7 References ... 9

2 BinX requirements .. 9
3 Overview of schema design... 9

3.1 Files ... 10
3.1.1 File: binx.xsd ... 10

3.1.1.1 The <dataset> tag .. 10
3.1.1.2 The <defType> tag .. 10
3.1.1.3 The <definitions> tag .. 10

3.1.2 File: types.xsd.. 11
3.1.2.1 Substitution Groups ... 11
3.1.2.2 Common type attributes .. 12

3.1.3 File:datatypes.xsd .. 12
3.1.3.1 Arrays .. 12
3.1.3.2 Structs .. 13
3.1.3.3 Unions ... 13
3.1.3.4 Other types... 13

3.2 Typedef mechanism... 13
3.3 XDR file types... 14
3.4 Modifiers ... 14
3.5 Limitations and workarounds .. 14
3.6 Self describing files ... 15

4 Examples of use... 15
4.1 Example use cases ... 15
4.2 Example BinX files ... 16

4.2.1 Astronomical table... 16
4.2.1.1 Definitions ... 16
4.2.1.2 File... 16
4.2.1.3 BinX .. 16

4.2.2 XDR data file... 17
4.2.2.1 Definitions ... 17
4.2.2.2 File... 17

4.2.3 Multiple file array example ... 18
4.2.3.1 Definitions ... 18
4.2.3.2 ArrayMultiFile... 18

4.2.4 A BMP picture file .. 19
4.2.4.1 Definition... 19
4.2.4.2 File... 20

5 Future... 21
5.1 Binary Access Library... 21
5.2 XML Description Library.. 21
5.3 GUI for writing/editing BinX files .. 21
5.4 JAJA extensions .. 21

EPCC-GDS-WP5-BinX v0.1 Unrestricted 3

5.5 Standards process .. 21
5.6 Test cases... 21
5.7 Implied XML representation ... 21
5.8 Transformations... 21
5.9 Units field .. 22
5.10 Date/Time representation .. 22
5.11 Classes vs. instances.. 22
5.12 Variables.. 23
5.13 Parameterised length relationships .. 23
5.14 Parameterised typedefs.. 23

Appendix A – XML Schema documentation .. 24

EPCC-GDS-WP5-BinX v0.1 Unrestricted 4

1 Introduction
This paper outlines work-in-progress on a proposed new XML Schema standard: Binary
XML description language (BinX), which provides the ability to describe the physical
representation and the overall structure of arbitrary binary data files.

After considering the issues involved in the representation of Scientific Data sets in Grid
environments we concluded that although XML can provide a very useful mechanism for
representing metadata, it is often inappropriate for representing large scientific datasets
themselves. However, there is a need for a standard way to describe binary datasets and to
that end we have developed BinX. We have also developed JAJA (Java Access to Just-about-
any-Array), a simple prototype browser for binary array files to demonstrate how the standard
might be used. Finally, we mention existing standards that could support the construction of
self-describing files that would include an XML metadata file description, as well as the
dataset itself.

An important note: BinX could be used in a number of different ways. The overall aim is to
facilitate data exchange by providing a machine intelligible description of data
representations. In general for storing specific metadata about datasets (parameters used, data
generatoed etc.) we recommend the construction of custom XML schema, which could be
used in combination with BinX for a complete representation of a dataset.

1.1 Motivation

XML is clearly today’s standard of choice for the representation and exchange of structured
data, particularly where that data must be read and interpreted by different applications
written by different groups. XML and XML Schema provide a convenient, potentially human
readable, easily extensible representation standard. It is tempting to assume, therefore, that all
data exchanged on the Grid would be exchanged as XML. However, for many users1 in the
scientific community the prospect of producing output data as XML presents many
disadvantages and offers very few opportunities.

The datasets for many scientific users are stored in very large (tens of gigabytes) regularly
structured binary files, often one or more large arrays or tables. They have tools for reading
and manipulating these files, often written in languages like Fortran with primitive file
handling capabilities. Whilst it is possible, in principle, to provide XML representations of
such data it is not clear why you would want to. An XML representation would have a
number of drawbacks:

• The XML representation would be significantly (around 2-4 times) larger than the
simple binary representation and therefore take longer to write, transport etc.

• Inappropriate representations: The proposed standard representation for a
multidimensional array in XML to effectively build a tree of lists (everything in XML
is a tree). This is a poor representation for scientific users because commonly
required operations such as extracting a slice or a diagonal becomes difficult to do.

XML also present few advantages:
Extensibility – The extensibility of XML is not enormously useful in this case. XML is most
useful when the data is represents is richly structured. The simple arrays and tables that we
are looking at do not have those features and are unlikely to change their in their basic
representations.

1 The BinX team have had requirements discussions with a number of eScience communities including
Astrogrid, MyGrid, RealityGrid and QCDGrid.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 5

Readability – A 10Gb array is not very human readable. It can obviously be visualised with
the right software but representing it as XML does nothing to improve this situation.
Available tools – The available XML tools have not been designed for efficiently parsing
such large files and their scalability may be severely tested.

It seems unlikely, therefore, that users with such datasets will represent them in XML.
However, there is enormous value, and corresponding interest, in representing the metadata
associated with the data in XML. The metadata will typically describe such things as how the
data was produced (parameters, algorithms used etc), when and by whom. It would be very
useful if that metadata could also contain a standard, canonical description of the structure
and representation of the data itself. The work in progress, reported on here, is a straw man
proposal for an XML Schema to address that need. The approach taken is described in the
Section 2.

1.1.1 Related work
One of the earliest pieces of work this area was a system developed by IBM called EXPRESS
[1] (data Extraction, Processing and REStructuring System). It supported access to a wide
variety of data and restructuring of it for new uses. The system was driven by two very high
level nonprocedural languages: DEFINE for data description and CONVERT for data
restructuring. Program generation and cooperating process techniques were used to achieve
efficient operation.

Another important data representation standard is STEP [2], STandard for the Exchange of
Product model data, the unofficial name for the evolving IS0 standard 10303-Product Data
Representation and Exchange. This aims to facilitate data/information exchange between
CAD/CAM/CAE systems. The standardization effort begun in 1984 and was joined by PDES
(Product Data Exchange using STEP), an American standardization initiative being developed
by the IGES/PDES Organization. The first set of International Standard documents was
approved in 1994. Information modeling, supported by the language EXPRESS, addresses
information about a product's entire life cycle.

The External Data Representation Standard (XDR) is an IETF standard defined in RFC1832
[3]. It is a standard for the description and encoding of data in binary files. It differs from
BinX in that:

• It defines aspects of the data encoding. BinX is intended to describe any (most)
encodings rather than specify features of the encoding that should be used.

• BinX is XML based.

The Hierarchical Data Format (HDF) project [4] is run by NCSA. It involves the development
and support of software and file formats for scientific data management. The HDF software
includes I/O libraries and tools for analyzing, visualizing, and converting scientific data. HDF
also, however, defines a binary data format in which the data is represented. HDF also
provides software that allows the conversion of (most) HDF files to a standard XML
representation.

1.2 BinX

EPCC-GDS-WP5-BinX v0.1 Unrestricted 6

BinX is the Binary XML description language. Its aim is to provide a canonical description
for data stored in binary files. Once we have carried out some initial groundwork we propose

to take the work forward as a GGF standard.

Output BinX

tool

Binary
data
file

BinX
file

Figure 1. Showing how the BinX file is used in to describe the format of the binary file.
Figure 1 is intended to illustrate how the BinX file could be used in practice. The BinX file
describes the structure and format of a binary data file and can also contains a URL which
points to that file. This allows the construction of tools that can read a very wide range of file
formats. Such tools could be presented as Web services and could have functionality to
convert between formats, to extract pieces of the data (e.g. slices or diagonals of an array), or
to browse the file. JAJA, discussed below, is a BinX tool that provides simple browsing
functionality of an array described in BinX.

BinX provides the ability to describe three levels of features in a binary file:

1. The underlying physical representation (e.g. bit/byte ordering)
2. The primitive types used (e.g. IEEE float, integer)
3. The structure of the data itself (e.g. array, list of fields, table)

The representation of data in binary files is much more standard than it used to be. The
prevalence of the IEEE floating point standard [5] has simplified a number of the issues.
From the point of the physical representation it is still necessary to specify:

• The byte ordering – big-endian/little endian
• The bit ordering – big-endian/little endian (although this is almost always big endian)
• Blocksize – many binary formats pad out data fields so that they are always a

multiple of a given block size.

BinX provides for the representation of a broad range of different primitive types. Including
all those that can be represented in XML Schema [6]. We anticipate that the standards process
will eventually bring this to an appropriate representative set.

In terms of structural representations we have been guided by the work on XDR. Anything
that can be represented in XDR can be represented in BinX so we have provision for variable
and fixed length arrays, structs, strings, unions etc. We have also made provision for the
description of data streams.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 7

The definition of BinX includes a “typeDef” mechanism that allows the user to define/rename
new types. The intention in our design is to try to provide the minimum number of basic types
and then to provide an include file that defines a set of standard extensions.

<?xml version="1.0" encoding="UTF-8"?>
<dataset xmlns="http://http://schemas.nesc.ac.uk/binx/binx"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://http://schemas.nesc.ac.uk/binx/binx
binx.xsd"
byteOrder="bigEndian" bitOrder="bigEndian" blockSize="32">
 <definitions>
 <typeDef typeName="complexType">
 <struct>
 <ieeeFloat-32 varName="real"/>
 <ieeeFloat-32 varName="imaginary"/>
 </struct>
 </typeDef>
 </definitions>
 <file src="http://www.epcc.ed.ac.uk/testFile.bin">
 <ieeeFloat-32 varName="inputParameter1"/>
 <integer-32 varName="inputParameter2"/>
 <arrayFixed>
 <defType typeName="complexType"/>
 <dim indexFrom="0" indexTo="99" name="x"/>
 <dim indexFrom="0" indexTo="4" name="y"/>
 </arrayFixed>
 </file>
</dataset>

Figure 2. An example BinX file.

Figure 2 shows a small simple BinX file. The root tag is <dataset> which is can contain a set of type
definitions, contained within the <definitions> tag, followed by one or more file descriptions contained
within the <file> tag. In this example we can see that a new type “ComplexType” has been declared in
the definitions section that is defined to be a struct containing two floats, one called “real” and one
called “imaginary”. There is only one file in this example, which is located at:

http://www.epcc.ed.ac.uk/testFile.bin

This file contains two numbers a float (inputParameter1) followed by an integer (inputParameter2)
followed by a two dimensional array of our new complex number type.

Notice that the <dataset> tag allows us to define the byte order, the bit order and the blocksize. These
can be changed for individual files, or indeed for individual fields.

1.2.1 Current status
BinX, at time of writing, is in early stages. We have taken the basic idea far enough to feel
confident that it is a practical proposition and to outline an approach that could be taken. We
anticipate presenting BinX as a proposed standard and that this could result in significant
changes before a standard is agreed upon.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 8

1.3 JAJA

Figure 3

JAJA (Java Access to Just-about-any Array) is a prototype BinX tool, built to demonstrate the
potential of the work. The JAJA interface (Figure 3) can be used to display arbitrary slices
through a multidimensional array specified in BinX.

1.4 Self describing files
An important requirement that came originally from the Astrogrid team was that it should to
be possible to include the description of a binary file in the file itself. If the description of the
file is located in a different file there is a danger that the correspondence between the two files
could be lost (as they are copied/moved around) and then the data would be rendered
effectively useless.

There are a number of approaches that could be adopted to solve this problem. A number of
ad-hoc methods are frequently employed for this purpose, such as making the first four bytes
of the file be an integer representing the offset in bytes to the start of the data etc. However
this is a general problem and there are existing standards that can be applied. The most
relevant of which is DIME which is designed to provide a way of attaching binary data to
XML files, such as SOAP messages. DIME [7] is a simple, lightweight message format that
encapsulates multiple messages with header information (such as MIME type) that allow the
individual messages to be later extracted using a DIME parser.

1.5 Future directions
The next steps for this work will be to bring it to review within the standards processes of the
Global Grid Forum. In the immediate future we aim to work on:

• Tools and libraries for reading and writing data files described using BinX.
• Testing activities with our user communities to investigate whether BinX can capture

all that is required.
• A Java GUI for writing BinX descriptions so that users are not forced to write the

XML by hand.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 9

1.6 Acknowledgements
The work reported here was carried out at EPCC in the University of Edinburgh under the
auspices of the UK National e-Science Centre.

1.7 References

[1] EXPRESS: A Data EXtraction, Processing, amd REStructuring System EXPRESS – Nan
C. Shu, Barron C. , R. W. , Sakti P. Ghosh and Vincent Y. Lum. TODS vol 2, No 2, 1997,
pp134-174.

[2] http://filebox.vt.edu/users/vkern/step.html

[3] http://www.faqs.org/rfcs/rfc1832.html

[4] HDF

[5] "IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

[6] http://www.w3.org/TR/xmlschema-2/

[7] H. Nielsen, H. Sanders, E. Christensen, " Direct Internet Message Encapsulation
(DIME)", INTERNET DRAFT "http://www.ietf.org/internet-drafts/draft-nielsen-dime-
01.txt", Microsoft, May 2001. This is work in progress.
2 BinX requirements
BinX has the following list of requirements:

1. BinX should provide a notation capable of describing the format of any2 binary file so
that the extraction and interpretation of the contents of that file could be achieved by
general purpose libraries and applications who have read the description. In particular
BinX should provide a mechanism for describing database relations so that they can
be exchanged between databases.

2. The notation used by BinX should take maximal advantage of standard definitions of
types and formats. Including for example the standard representations in XML
Schema.

3. The notation used by BinX should be succinct, e.g. it should be able to import and
reuse previously defined patterns and it should be able to re-use, by reference,
subpattern definitions that have been declared elsewhere in the same description.

4. BinX should have a defined W3C XML Schema.
5. It should be possible to use BinX in such a way that humans can read it and easily

comprehend the structure it describes.
6. BinX should be capable of convenient and independent extension.

3 Overview of schema design
In this section provide a description of the various files that comprise the BinX XML Schema
and standard typedefs. The description is current for BinX version 0.2

2 In fact BinX is inherently limited in its description of numerical values. We have tried to include a
wide selection of common representations but it is clearly open to debate as to whether these are the
right ones. In general, it is impossible to cover all bases, vendor specific floating point representations
for example are not (and probably should not) be included.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 10

3.1 Files
The BinX consists of the following files:

• binx.xsd – principle file describing structure of a binx document
• types.xsd – file describing notation for the primitive types: numbers, characters, bytes

etc.
• datatypes – file describing notation for the compound types: arrays, strings structs etc.

Here we provide a high level overview of the contents of these files and some of the design
principles applied and issues encountered. For a detailed description of the elements in the
files see Appendix A.

An important thing to remember is that the schema described here provides a description of
the syntax of the XML BinX file. It does not (and cannot) describe the semantics intended by
the BinX tags. (That semantics is outlined informally here and should be specified precisely
in Appendix A.) That is to say that a variable array is an array in which the array values are
preceded by an integer giving the array size. It is tempting to thing that the Schema would
describe a variable array, therefore, as an integer followed by an array. However the Schema
describes the semantics of the BinX XML file. The array size is not given here and so it
should not be included in the Schema.

3.1.1 File: binx.xsd
The file ‘binx.xsd’ is the root document for the BinX Schema. It describes the structural
representation of a BinX file. There are three global elements: the dataset, defType and
definitions.

3.1.1.1 The <dataset> tag
The primary root element of a BinX file is the <dataset> tag. A BinX document will
normally consist of a dataset which contains an optional set of definitions (typeDef statements
– see below) followed by a sequence of one or more <file> tag containing a sequence of
type descriptions or an <arrayMultiFile> tag denoting an array spanning multiple files.

Each file can contain a sequence of types. These can be primitive types, datatypes, or user
defined types.

The arrayMultiFile feature allows of the situation where a single array is stored across
multiple files with each file containing a segment of the array divided with respect to the
slowest changing index. (In BinX this is the last index to be specified).

3.1.1.2 The <defType> tag
This tag is used refer to user defined tags (see typedef mechanism below). It is included as a
global tag for ease of reference elsewhere in the schema. It is not intended to be used as a root
tag.

3.1.1.3 The <definitions> tag
The definitions tag is can be optionally used as the first element in a dataset. It is here that the
user can define and rename types that can be referred to in the rest of the document (see
typedef mechanism below for details). This tag is included as a global element to allow the
definition of type extension files. These are BinX files that just contain definitions of new
types and structures. An example of such a file is the standard XDR types include file that is
described below.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 11

The use of external include files raises some design questions. The intention with these
include files a reference to the file could be included directly in the definitions section. The
standard way to do this in XML is to use XInclude (http://www.w3.org/TR/xinclude/),
however this is at time of writing a new standard that is not supported by the current
generation of parsers. It is therefore a requirement that BinX applications provide (possibly
limited) support for XInclude. We aim to provide a naïve implementation of some of
XInclude for use with the Apache tools (until Apache implement it properly themselves).

A note about the inclusion statements: They should be constructed so that the root tag
<definitions> in the included document is not included.

3.1.2 File: types.xsd
This file contains the base types for representing numbers, bytes, characters etc. We have
adopted the convention of including the type’s length in bits at the end of the name. So for
example the types include: character-8, short-16, integer-32. Slightly unusual types are void-0
and enum-32.

The type void-0 allows the opportunity of representing a type of zero length. This can be
useful when defining unions, since it can be useful there to have a case in which no data is
stored.

The enum-32 is an enumerated type. The representation in the binary file is a standard 32 bit
integer. This can take an arbitrary number of constant values each of which has a string
associated with it. The strings can be defined within the enum-32 tag.

3.1.2.1 Substitution Groups
In order to organise the types and easily allow the XML Schema to have the appropriate
notion of a type, the types are arranged into a hierarchy of substitution groups. This is
illustrated in the following diagram:

dataType primitiveType

type

So primitiveType and dataType can substitute for type. In the Schema definition there has to
be an element associated with each of these substitution groups in order to define the groups.
However we (clearly) never expect to see the primitiveType element appear in a BinX
document, even though it would be legal to do so3.

In addition to elements associated with each group there are also XML Schema types defined
which collect all the common properties (attributed etc.) of the group. These are called
typeType, primitiveTypeType and dataTypeType respectively. The shared attributes allow
local redefinition of bit order, byte order and blockSize (see below for an explaination of the
sematics). They also include a varName attribute which enables the user to name the field
being defined, and an ignore attribute. The ignor attribute allows the user to indicate to
applications that this field is not expected to be displayed. This might include padding data
between parameters and output for example.

3 There might be a better way of defining this stuff of course.

http://www.w3.org/TR/xinclude/

EPCC-GDS-WP5-BinX v0.1 Unrestricted 12

3.1.2.2 Common type attributes
All types (primitive or data) possess the following attributes:

1. bitOrder – order of the bits in the representation can be big or little endian (default is
bigEndian)

2. byteOrder – order of the bytes in the representation can be big or little endian (default
is bigEndian)

3. blockSize – size of the blocks in the representation, given in bits (default is 1). Types
that have a size which is not a multiple of the block size will be padded to bring them
up to the nearst multiple of the block size.

4. ignore – a Boolean type which provides a hint to browsers that the user is not
interested in the data in this field (used for padding).

5. varName – user name for the field.
6. key – for identifying key fields in data, for example, in database relations. Can take

one of the following enumerated values: key, primaryKey, secondaryKey,
tertiaryKey.

7. info – an unspecified string field intended for application extensions.
8. comment – for user annotations to the data field.

The first four fields are part of an attribute group “representationDef” that is applied at several
levels within BinX. All fields are optional.

3.1.3 File:datatypes.xsd
The datatypes.xsd file contains all the composite data types: arrays, structs and unions. In the
rest of this section we look at each of these in turn.

3.1.3.1 Arrays
There are four tags associated with arrays:

1. array – defines a substitution group, not to be used directly
2. arrayFixed – A multidimensional array of fixed size.
3. arrayVariable – A multidimensional array in which the size of the slowest moving

index is given as an integer in the binary file itself.
4. arrayStreamed – A multidimensional array in which the length of the slowest

changing variable is not fixed.

The element “array” itself is used to define a substitution group within the Schema. It is not
intended to be used directly.

The element “arrayFixed” allows the definition of a multidimensional array where the size of
every index is fixed. The array can contain an arbitrary number of dimensions. Each
dimension is represented by the use of a <dim> tag. This tag allows the start and end values
of indices to be given (a step size of one is assumed). It also allows each index to be named.
The dimensions must be given in order from fastest moving to slowest moving.

The element “arrayVariable” allows the definition of a multidimensional array similar to that
in arrayFixed. The difference is that the last dimension specified (the slowest moving) is
specified with a dimVariable tag. This tag does not allow the upper limit of the index to be
given. Instead this value is assumed to be given as an unsigned integer in the first 32-bits of
the data associated with the array.

The “arrayStreamed” array is similar again except that in this case the last dimension is
specified with a dimStreamed tag. The dimStreamed tag also prevents the inclusion of an
upper limit on the index value. This is to allow the processing of streamed arrays where the
size of the array may be unknown.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 13

3.1.3.2 Structs
Structs are simply sequences of types. They can be named by including them in typeDef tags.

3.1.3.3 Unions
The unions are discriminant unions based on those given in XDR. The union is defined by a
declaration of the discriminant followed by a series of cases. The discriminant can be either
an integer, and unsigned integer or an enumeration. Based on the value of the descriminant a
case is selected which defines the ultimate type of the union. So in the binary file the union
will be represented by a 32-bit discriminant followed by a type whose size depends on the
discriminant value.

3.1.3.4 Other types
The aim in designing the BinX schema was to keep the definition as tight as possible. We
have tried to avoid unnecessary redundancy in the definitions, particularly in the definitions
of datatypes. In this section we review how booleans, options, strings and tables can be
constructed using BinX.

A boolean can be constructed as an enumeration:
 <enum-32 blockSize="32" byteOrder="bigEndian">
 <val value="0" name="false"/>
 <val value="1" name="true"/>
 </enum-32>
or alternatively a bit-1 can be used.

An option is a union which uses a boolean and a void:
 <union blockSize="32" byteOrder="bigEndian">
 <discriminant>
 <defType typeName="xdrBool"/>
 </discriminant>
 <case discriminantValue="TRUE">
 *** THE OPTIIONAL TYPE GOES HERE***
 </case>
 <case discriminantValue="FALSE">
 <void-0/>
 </case>
 </union>

Strings are just single dimension arrays (fixed or variable) of character-8.

Tables are single dimension arrays (fixed, variable or streaming) of structs. Where the struct
represents a table row.

3.2 Typedef mechanism
BinX makes use of XML Schema references to provide a simple mechanism for allowing
users to construct new types and rename existing types. The mechanism is limited in that
there is no way to allow parameterisation of the new of renamed types. For example it is
possible to create a new type “my16x16FloatArray” which is a fixed size 16 by 16 two-
dimensional array of floats. It is not possible however to rename the arrayFixed to provide a
user defined token that can be used to define arrays of arbitrary size because there is no way
to provide size parameters for the new type.

New types are defined within the definition section at the top of a BinX document using the
<typeDef> tag. This tag takes a single argument “typeName” – the name of the new type.
The type definition itself should then be enclosed within the typeDef start and end tags. Note

EPCC-GDS-WP5-BinX v0.1 Unrestricted 14

that typeDef expects exactly one type to be enclosed. If the user wishes to enumerate a
sequence of types the struct type should be used.

New types defined in this way are referred to using the defType element. The defType tag has
an attribute “typeName”. The value of this attribute must match to the “typeName” of a
typeDef declaration earlier in the same document. XML Schema references are used to
enforce this matching requirement.

3.3 XDR file types
BinX will allow the representation of any type that can be represented using XDR. For
convenience a series of typeDefs have been constructed to provide easy reference to these
types. The following is a list of the types defined in this way:

• xdrInt
• xdrUnsignedInt
• xdrFloat
• xdrDouble
• xdrQuadruple
• xdrOpaqueVariable
• xdrString
• xdrVoid

Unfortunately due to the limitations of the typeDef mechanism, specifically the lack of
parameterisation, some of the xdr types could not be defined in this way. These are:

• Enumeration
• Struct
• Union
• Option
• Fixed Array

For enumeration, structures, unions and fixed arrays simply use the equivalent BinX type
ensuring that blocksize and byteOrder attributes are set to 32 and bigEndian respectively. To
provide the semantics of the option type use the example given ealier.

3.4 Modifiers
At each level in Binx, the entire dataset, a whole file or the individual type, the user can set
the bit order, byte order and block size of the types being used. Bit order can be bigendian or
little endian and refers to the whether the first bit or the last bit is the most significant,
respectively. Byte order can be big endian or little endian and refers to whether the bytes in a
primitive type are most significant byte first or last respectively. Block size refers to the
smallest block of the data that can be individually addressed. It is given in bits. Types whose
size is not an whole multiple of block size are assumed to be padded to the nearest whole
multiple.

3.5 Limitations and workarounds
BinX has various limitations. Whereas the aim is to be able to provide a notation for
describing any binary file, it is impossible to cover all bases. The biggest limitation that we
are aware of is the use of fixed primitive types. Thus it would be impossible, for example, in
BinX, to represent a number given in a vendor-specific floating-point type. It would, of
course, be possible to notate it as a fixed array of bytes, but the semantics of the floating-point
representation would be opaque.

The other limitation of BinX is that the typeDef mechanism cannot be parameterised. If
additional parameterised type definitions are necessary, the user will have to extend the

EPCC-GDS-WP5-BinX v0.1 Unrestricted 15

schema itself. The advantage of using typeDefed types is that because the types are built
strictly on top of the existing semantics, an applications can read typeDef include files and
make immediate use of the new types. Extensions to the XML Schema will, inevitably,
require code changes to apply.

3.6 Self describing files
One of the requirements for BinX which emerged from a discussion with the Astrogrid team
is that there should be a mechanism for files to be self-describing. The problem is that if
metadata such as the BinX description is kept in a separate file then there is a significant
overhead in ensuring that metadata and data files are kept in correspondence, and as files are
moved around between sites it is easy to see how that correspondence could be lost.

There are a number of ways in which the metadata and data files could be combined:

1. using of MIME or DIME headers to delineate the start and end of different files
2. fixed header length
3. ad hoc variable length header (first 4 bytes represents header length)
4. represent the binary data in XML using an ascii encoding standard (such as binhex)
5. simply append the binary data to the xml and encode the header length in BinX (the

file tag “offset” attribute should allow you to do this).

What we would like is a simple mechanism that makes it easy for, for example a Fortran
code, to ignore the header and access the data directly. Furthermore we would like the data to
be raw so that it is easy to skip through (for example a Terabyte array) to access the pieces
required. This means that we need the header size to be easily accessed (not encoded in XML)
and we cannot use an encoding scheme on the data – ruling out 3 and 4. Options 2 and 3 seem
very fragile. Any fixed size header is bound to be inconveniently large for some applications
and too small for others, probably both. Encoding the header size at the start of the file is easy
to do but requires well-understood convention to follow.

So, our favoured option is 1 since this is what the standards are defined for. We would expect
as part of the future work to define a library that Fortran programmers could access that
would carry out the appropriate extraction. However, we have recently encountered a problem
with this approach. The problem involves the maximum file size. DIME chunks data with a
max chunk size of 2^32-1. This unfortunately breaks our requirement that the data be raw
because every 2^32-1 bytes we would need to begin and end a chunk. MIME allows you to
specify data size using the Content-Length header. However I have been unable to determine
whether this has a maximum value (and if so, what it is).

Our proposal to use MIME and deal with the size issue as follows: We assume that if the data
file size exceeds the maximum Content-Length there will be just one data file present. The
MIME headers will allow us to find the start of the file and the BinX representation should
give us all the information required about its length. So in this case we propose to either make
the Content-Length field negative to make it explicit that the size is not defined there or to
miss it out entirely.

4 Examples of use
In this section we present first some examples of how BinX might be applied and then some
examples showing the use of the BinX notation.

4.1 Example use cases
In this section we try to outline the sorts of ways in which a BinX file description might be
used. Let us suppose that we have a file of binary data f and a BinX description of that file df.
(These may be truly separate files, or separate MIME separated parts of the same file – the

EPCC-GDS-WP5-BinX v0.1 Unrestricted 16

difference is not important for this discussion.) The description mechanism will then allow us
to do the following:

1. Allow human inspection, editing and visualisation of f , navigating using the names
and structures in df and displaying values in accordance with df.

2. Provide a canonical mapping from the data in f to a standard XML representation
(such as using XSIL).

3. Allow extraction of subsets or derivatives of the data by interpreting queriesor
expressions in some standard language. For example these could be Xqueries over
the canonical XML representation implied by the data (see 2 above) or they could be
datacutter array slices, the could even be SQL.

4. Given a second data format df’ and a mapping df→df’ the data in f could be
converted to the new format.

5. Given a description df and some target programming language a library for accessing
the values in any file complying with df could be automatically generated.

4.2 Example BinX files
This section contains some example BinX description files to serve as illustrations of the
flexibility of the representation.

4.2.1 Astronomical table
This example is inspired by an example taken from the Astrogrid project. It illustrates how
BinX can be used to represent a table using an array of structs. In this case the structs in
question are fairly complicated and some of the elements involve the description of variable
sized arrays. So taking the example in sections

4.2.1.1 Definitions
• String we begin by defining a string as a variable length array of character-8

primitives.
• Then we define the “tableRowType” which is a struct with the following members:

o A fixed size character array (string) called “Star-name” of size 11 characters.
o Two floats called “RA” and “Dec”.
o A 3 dimensional array, “Counts”, in which the last dimension is of variable

size.
• Finally we define the “TableType” which uses the “string” type we defined earlier to

encode two strings “Table Name” and “Table Description, followed by a streamed
single dimensional array of table row structs.

4.2.1.2 File
A single file is described its name is given as "astroFileLocation.bin" and it is described as
containing an observer name (held in a variable length string) followed by a table of the type
defined above.

4.2.1.3 BinX

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Martin
Westhead (EPCC) -->
<dataset xmlns="http://http://schemas.nesc.ac.uk/binx/binx"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://http://schemas.nesc.ac.uk/binx/binx
C:\DOCUME~1\martin\MYDOCU~1\Grid\Binx\src\WP5\Binx-XML\binx.xsd">
 <definitions>
 <typeDef typeName="string">
 <arrayVariable>

EPCC-GDS-WP5-BinX v0.1 Unrestricted 17

 <character-8/>
 <dimVariable/>
 </arrayVariable>
 </typeDef>
 <typeDef typeName="tableRowType">
 <struct>
 <arrayFixed varName="Star-Name">
 <character-8/>
 <dim indexTo="10"/>
 </arrayFixed>
 <ieeeFloat-32 varName="RA"/>
 <ieeeFloat-32 varName="Dec"/>
 <arrayVariable varName="Counts">
 <integer-32/>
 <dim indexTo="2"/>
 <dim indexTo="3"/>
 <dimVariable/>
 </arrayVariable>
 </struct>
 </typeDef>
 <typeDef typeName="TableType">
 <struct>
 <defType typeName="string" varName="Table Name"/>
 <defType typeName="string" varName="Table Description"/>
 <arrayStreamed>
 <defType typeName="tableRowType"/>
 <dimStreamed/>
 </arrayStreamed>
 </struct>
 </typeDef>
 </definitions>
 <file src="astroFileLocation.bin">
 <defType typeName="string" varName="Observer"/>
 <defType typeName="TableType"/>
 </file>
</dataset>

4.2.2 XDR data file
This example shows how the XDR type definitions can be used, again we example the
description by section.

4.2.2.1 Definitions
The first line of the definition includes the standard xdr definition set. Then the following
types are defined:

• A struct called parameters containing:
o an xdrFloat called “temperature” (with a comment identifying the units of

measure).
o an xdrInt called “increments”,
o and an xdrString called “dateOfExecution”.

• A padding field defined as a fixed array of 48 bytes (which are marked to be ignored).
• Finally a type “data” is defined as a fixed two dimensional array of doubles.

4.2.2.2 File
The file is defined to contain an initial integer (called header offset) followed by a parameters
struct followed by padding and in turn followed by data.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 18

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Martin
Westhead(EPCC) -->
<dataset xmlns="http://schemas.nesc.ac.uk/binx/binx"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.nesc.ac.uk/binx/binx
C:\DOCUME~1\martin\MYDOCU~1\Grid\Binx\src\WP5\Binx-XML\binx.xsd"
xmlns:xi="http://www.w3.org/2001/XInclude">
 <definitions>
 <xi:include href="xdrTypes.xml#xpointer(//definitions/*)"/>
 <typeDef typeName="parameters">
 <struct>
 <defType typeName="xdrFloat" varName="Temperature"
comment="degrees Celsius"/>
 <defType typeName="xdrInt" varName="increments"/>
 <defType typeName="xdrString" varName="dateOfExecution"/>
 </struct>
 </typeDef>
 <typeDef typeName="padding">
 <arrayFixed ignore="true" blockSize="32" byteOrder="bigEndian">
 <byte-8/>
 <dim indexTo="48"/>
 </arrayFixed>
 </typeDef>
 <typeDef typeName="data">
 <arrayFixed blockSize="32" byteOrder="bigEndian">
 <defType typeName="xdrDouble"/>
 <dim indexTo="64" name="x"/>
 <dim indexTo="128" name="y"/>
 </arrayFixed>
 </typeDef>
 </definitions>
 <file src="xdrExampleData.bin">
 <defType typeName="xdrInt" varName="headerOffset"/>
 <defType typeName="parameters"/>
 <defType typeName="padding"/>
 <defType typeName="data"/>
 </file>
</dataset>

4.2.3 Multiple file array example
This example was inspired by the data from the RealityGrid.

4.2.3.1 Definitions
The following types are defined:

• A struct called “siteData” containing:
o An integer “index”
o An array of 15 floats called “f”
o An array of 15 floats called “g”
o An array of 2 floats called “vector-d”
o Two integers “phi” and “rho”

4.2.3.2 ArrayMultiFile
Rather than a single file this time, this data is a single array which has been split across
multiple files. Indexes over the first three dimensions run through all the files, the indexes of
the last dimension are split across the files: file1, file2, file3 and file4.
<?xml version="1.0" encoding="UTF-8"?>

EPCC-GDS-WP5-BinX v0.1 Unrestricted 19

<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Martin
Westhead (EPCC) -->
<dataset xmlns="http://schemas.nesc.ac.uk/binx/binx"
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.nesc.ac.uk/binx/binx
C:\DOCUME~1\martin\MYDOCU~1\Grid\Binx\src\WP5\Binx-XML\binx.xsd">
 <definitions>
 <typeDef typeName="siteData">
 <struct>
 <integer-32 varName="index"/>
 <arrayFixed varName="f">
 <ieeeFloat-32/>
 <dim indexTo="14"/>
 </arrayFixed>
 <arrayFixed varName="g">
 <ieeeFloat-32/>
 <dim indexTo="14"/>
 </arrayFixed>
 <arrayFixed varName="vector-d">
 <ieeeFloat-32/>
 <dim indexTo="2"/>
 </arrayFixed>
 <integer-32 varName="phi"/>
 <integer-32 varName="rho"/>
 </struct>
 </typeDef>
 </definitions>
 <arrayMultiFile>
 <defType typeName="siteData"/>
 <dim indexTo="256" name="x"/>
 <dim indexTo="256" name="y"/>
 <dim indexTo="256" name="z"/>
 <dimMultiFile name="t">
 <file src="file1" offset="0" indexFrom="0" indexTo="64"/>
 <file src="file2" offset="0" indexFrom="0" indexTo="64"/>
 <file src="file3" offset="0" indexFrom="0" indexTo="64"/>
 <file src="file4" offset="0" indexFrom="0" indexTo="64"/>
 </dimMultiFile>
 </arrayMultiFile>
</dataset>

4.2.4 A BMP picture file
This example is based on the standard for monochrome BMP graphics file.

4.2.4.1 Definition
The following types are defined:

• fileHeader is a struct containing the following fields:
o a fixed sized character array “string-‘BM’”
o an integer representing file size
o two arrays of two bytes “Reserved – 0”
o an integer called “imageOffset”

• imageHeader is a struct containing:
o a series of named integers and shorts
o a two byte array defining the colour map
o an integer defining the “numberOfFirstColours”

EPCC-GDS-WP5-BinX v0.1 Unrestricted 20

• image data is defined as a streamed array of bits. The array is defined as being
streamed because we do not know its size. (This is a bit of a hack – the size
information is encoded in the binary file. See future work).

4.2.4.2 File
The file itself, “picture.bmp”, consists of a fileheader, followed by and image header,
followed by image data.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by Martin
Westhead (EPCC) -->
<dataset xmlns="http://schemas.nesc.ac.uk/binx/binx"
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.nesc.ac.uk/binx/binx
C:\DOCUME~1\martin\MYDOCU~1\Grid\Binx\src\WP5\Binx-XML\binx.xsd">
 <definitions>
 <typeDef typeName="fileHeader">
 <struct>
 <arrayFixed varName="string-'BM'">
 <character-8/>
 <dim indexTo="2"/>
 </arrayFixed>
 <integer-32 varName="fileSize"/>
 <arrayFixed varName="Reserved - 0">
 <byte-8/>
 <dim indexTo="2"/>
 </arrayFixed>
 <arrayFixed varName="Reserved - 0">
 <byte-8/>
 <dim indexTo="2"/>
 </arrayFixed>
 <integer-32 varName="imageOffset"/>
 </struct>
 </typeDef>
 <typeDef typeName="imageHeader">
 <struct>
 <integer-32 varName="imageHeaderSize"/>
 <integer-32 varName="imageWidth"/>
 <integer-32 varName="imageHeight"/>
 <short-16 varName="numPlanes"/>
 <short-16 varName="bitsPerPixel"/>
 <integer-32 varName="compressionType"/>
 <integer-32 varName="horizontalResolution"/>
 <integer-32 varName="verticalResolution"/>
 <integer-32 varName="numberOfColours"/>
 <arrayFixed varName="colourMap">
 <byte-8/>
 <dim indexTo="2"/>
 </arrayFixed>
 <integer-32 varName="numberOfFirstColours"/>
 </struct>
 </typeDef>
 <typeDef typeName="imageData">
 <arrayStreamed>
 <bit-1/>
 <dimStreamed/>
 </arrayStreamed>
 </typeDef>
 </definitions>

EPCC-GDS-WP5-BinX v0.1 Unrestricted 21

 <file src="picture.bmp">
 <defType typeName="fileHeader"/>
 <defType typeName="imageHeader"/>
 <defType typeName="imageData"/>
 </file>
</dataset>

5 Future
In this section we consider a number of ways in which we are planning to or considering
taking BinX in the future. These are not in any particular order.

5.1 Binary Access Library
A clear requirement in taking this work forward is a library which can read and write binary
files describe by BinX files including data files which have had BinX descriptions embedded
in them (e.g. using MIME). For interoperability with Fortran, C, C++ and Java, these libraries
should probably be written in C++ with a C API defined to them.

5.2 XML Description Library
This would be a library to support the writing of BinX descriptions with the important
property that it would automatically provide the right encoding (bit, byte ordering, block size,
integer/floating point representation) for the platform it was writing on, by default.

5.3 GUI for writing/editing BinX files
Built on top of the previous library this would be a GUI to allow users to easily describe their
data files.

5.4 JAJA extensions
JAJA (Java Access to Just-about-any Array) is a BinX browser. It was constructed for BinX
0.1 and at time of writing is hopelessly out of date. This idea should be revived for testing and
demonstration and really represents a GUI on top of the Binary Access Library.

5.5 Standards process
BinX needs to be taken forward as an international standard through the GGF.

5.6 Test cases
We need to develop test cases based on real datasets from our test users and others to ensure
that the description is sufficiently powerful and that the tools can do what we claim.

5.7 Implied XML representation
From a BinX description it would be possible to infer a standard XML representation of a file.
Such a representation could be based on an existing standard for Scientific Data
representation such as XSIL. The advantage of formalising this representations is that it
would allow:

1. XPath XQuery and Xpointer to be used to return data from a binary file encoded
with BinX

2. With a tool like Cacoon XSL transformations of BinX files would be possible.

5.8 Transformations
There are three kinds of transformation that we would like to be able to support:

EPCC-GDS-WP5-BinX v0.1 Unrestricted 22

1. Binary Compatibility Transformations – these are transformations in which the
structure of the data represented remains unchanged, but the underlying binary
representation (e.g. byte order or Blocksize) changes. Such transformations can be
implied from two BinX files (start and end) and a conversion tool would be easy to
construct from the Binary Access Library.

2. Structural transformations – these are transformations in which data fields are
reordered, deleted, renamed etc. From the Implied XML representation of a file we
could use a tool such as Cacoon to carry out such transformations. A BinX generator
would be written using the BinX Access Libraray to generate SAX events
corresponding to the implied XML representation while parsing a binary file. These
events can be passed down the Cacoon pipeline and be transformed using XSLT. A
serialiser on the far end can turn the transformed events into a new BinX file.

3. Numerical transformations – some level of simple coverstion of data (e.g. between
units – see below) could be handled by XSLT and Cacoon. However large scale
numerical operations and calculations such as array transpositions etc. are unlikely to
be very efficient. Such transformations could be handled by applying the binary
access library to a tool such as Data Cutter.

5.9 Units field
It would be useful to have a standard optional field which allowed the expression of units.
Better still the units should be described as an NMTOKEN type which would enumerate a
standard set (SI units plus common alternatives, say). The advantage of having a standard
representation is that the semantics can then be defined and therefore safely inferred from the
unit used and so a generic tool for conversion between units becomes possible.

5.10 Date/Time representation
A standard BinX representation for Data and Time would probably be useful. Whilst this is,
in general, a can of worms, it should be possible to define a standard set of typeDefs to
represent these plus semantics to accompany them. This would at least save users having to
do it from scratch every time.

5.11 Classes vs. instances
It has been left a rather open question whether BinX should be used to define classes or
instances of a data files. That is does a BinX file describe the set of all possible bmp files or
does it describe this particular bmp file “myPicture.bmp”. With simple files, there is no real
difference. Simple files means either:

• Files with static sized fields or
• Files which use the XDR conventions for variable sized fields and discriminated

unions (essentially that the data is proceeded by and integer representing size or
descriminant).

However, consider the bmp case. One of the fields in the bmp header is file size.
Unfortunately there is no way to indicate to BinX the this is file size. So it is possible in BinX
to

• provide a complete description of a particular bmp file.
• or to provide a partial description of all (perhaps a class of) all possible bmp files.

However this partial description will have to leave the size open.

The fact that the data files in BinX are specifically named suggests that we are actually
describing instances and not classes of files. On the other hand it would be useful if we could
settle on a file description that was the same for all files of that type. How useful it would be
depends on the use case scenarios. The next sections considers some extensions that would
provide greater flexibility in this area.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 23

5.12 Variables
A useful extension (and one which would be necessary for the subsequent suggestions on
parameterisation) is the addition of variables to BinX. A syntax like to one used in XSL
would work for example a variable would be set with:
 <integerVariable name="arrayLength">32</variable>

and used with:
 <arrayFixed>
 <byte-8/>
 <dim indexTo="$arrayLength"/>
 </arrayFixed>

The XSL semantics is that a variable is write-once, read-many that would simplify their use.
At this point integers are probably the only type we would need.

5.13 Parameterised length relationships
So we would like to be able to set variables from fields in a binary file, carry out simple
calculations on them and use the results as part of the description. There are two ways we
would like to set the field, one by discovering the true size of some of the data, the other by
taking the value of a data field. For example a file might contain:
 <variable-sizeOf name="headerSize">
 <arrayVariable varName="author name">
 <character-8/>
 <dimVariable/>
 </arrayVariable>
 <ieeeFloat varName="parameter1"/>
 <variable-valueOf name="fileSize">
 <integer-32 varName="fileSize"/>
 </variable-valueOf>
 </variable-sizeOf>
 <arrayFixed varName="data">
 <byte-8/>
 <dim indexTo="$fileSize-$headerSize"/>
 </arrayFixed>

So in this contrived example, the header is of variable size because the “author name” field is
a variable array. The header provides as one of its fields the actual size of the file. We have to
calculate the header size – captured in the variable “headerSize” – and extract the file size –
captured in the variable “fileSize” and then subtract the two to get the data size.

This sort of flexibility makes describing classes of files much more feasible – an important
question is: do we need to do that?

5.14 Parameterised typedefs
A significant limitation in BinX is the inability to supply parameters to the typeDefs. We
would like to be able to say for example that a “table” is a one dimensional fixed sized array
of structs, but leave the definition of how big it is, and which structs until later. XSL has a
parameter passing syntax that we could borrow for this. There is a danger that our type system
could become undecidable or, at least NP-complete.

EPCC-GDS-WP5-BinX v0.1 Unrestricted 24

Appendix A – XML Schema documentation
Schema binx.xsd

schema location: C:\Documents and Settings\martin\My Documents\Grid\Binx\src\WP5\Binx-XML\binx.xsd
targetNamespace: http://schemas.nesc.ac.uk/binx/binx

Elements
dataset
definitions
defType

schema location: C:\Documents and Settings\martin\My Documents\Grid\Binx\src\WP5\Binx-XML\types.xsd
targetNamespace: http://schemas.nesc.ac.uk/binx/binx

Elements Complex types Simple types Attr. groups
bit-1 primitiveTypeType orderType representationDef
byte-8 typeType
character-8
enum-32
ieeeDouble-64
ieeeFloat-32
ieeeQuadruple-128
integer-32
longInteger-64
primitiveType
short-16
type
unicodeCharacter-32
unsignedInteger-32
unsignedLongInteger-64
unsignedShort-16
void-0

schema location: C:\Documents and Settings\martin\My Documents\Grid\Binx\src\WP5\Binx-XML\datatypes.xsd
targetNamespace: http://schemas.nesc.ac.uk/binx/binx

Elements Complex types
array arrayFixedType
arrayFixed arrayStreamedType
arrayStreamed arrayType
arrayVariable arrayVariableType
dataType dataTypeType
struct dimStreamedType
union dimType
 dimVariableType

 structType

 unionType

schema location: C:\Documents and Settings\martin\My Documents\Grid\Binx\src\WP5\Binx-XML\xinclude.xsd
targetNamespace: http://www.w3.org/2001/XInclude

http://localhost/twiki/src/WP5/Binx-XML/binx.xsd
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/types.xsd
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/datatypes.xsd
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/xinclude.xsd

EPCC-GDS-WP5-BinX v0.1 Unrestricted 25

Elements
fallback
include

element dataset

namespace http://schemas.nesc.ac.uk/binx/binx

children definitions file arrayMultiFile

identity
constraints

 Name Refer Selector Field(s)
key typeDefKey bx:definitions/bx:typ

eDef
@typeName

keyref typeDefRef typeDefKey .//defType @typeName
annotation documentation A description of an complete dataset possibly spread across mutiple files.

element dataset/file

namespace http://schemas.nesc.ac.uk/binx/binx

children type

annotation documentation A description that allows (ultimately) the description and interpretation of a complete file.

element dataset/arrayMultiFile

namespace http://schemas.nesc.ac.uk/binx/binx

children type dim dimMultiFile

annotation documentation A description that allows the identification and interpretation of an array that has been decomposed
across multiple files. The decomposition must be with repect to regions of the slowest moving
index.

element dataset/arrayMultiFile/dim

namespace http://schemas.nesc.ac.uk/binx/binx

type dimType

element dataset/arrayMultiFile/dimMultiFile

namespace http://schemas.nesc.ac.uk/binx/binx

children file

annotation documentation The slowest moving dimentsion is defined here and this is where the decoposition of the array into
multiple files is defined.

element dataset/arrayMultiFile/dimMultiFile/file

namespace http://schemas.nesc.ac.uk/binx/binx

annotation documentation Each file contains a chunck of the array as defined by the indexes specified. No check is performed
(by the XML) to ensure that the indexes are contiguous.

element definitions

namespace http://schemas.nesc.ac.uk/binx/binx

children typeDef xi:include

used by element dataset

annotation documentation This is where the user defined types are located. In a conventional BinX file this would be the first
part of the dataSet tag. However BinX can use XInclude to include additional definitions from

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 26

external files. To allow these files to be validated against this schema, the definitions tag is made a
global element so that in an include file, this is the root.

element definitions/typeDef

namespace http://schemas.nesc.ac.uk/binx/binx

children type

annotation documentation This is where the user-defined types are defined.

element defType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of dataTypeType

annotation documentation A user defined type

element bit-1

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A single bit - has size 1 bit

element byte-8

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A single byte - has size 8 bits range from -128 to 127

element character-8

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation An eight bit character (char) this is equivalent to an unsigned byte

element enum-32

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of primitiveTypeType

children val

used by element unionType/discriminant

annotation documentation An enumerated type. Will be represented in the file as a 32-bit integer string values assigned
according to type definition.

element enum-32/val

namespace http://schemas.nesc.ac.uk/binx/binx

element ieeeDouble-64

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 27

annotation documentation A 64-bit IEEE floating point number

element ieeeFloat-32

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A 32-bit IEEE floating point number

element ieeeQuadruple-128

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A 128-bit IEEE floating point number

element integer-32

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

used by element unionType/discriminant

annotation documentation A 32-bit integer

element longInteger-64

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A 64-bit integer

element primitiveType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of primitiveTypeType

annotation documentation Used to define the substitution group of all primitive types

element short-16

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A 16-bit integer

element type

namespace http://schemas.nesc.ac.uk/binx/binx

type typeType

used by elements dataset/arrayMultiFile unionType/case dataset/file definitions/typeDef
complexTypes arrayStreamedType arrayType arrayVariableType structType

annotation documentation Defines the substitution group of types

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 28

element unicodeCharacter-32

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation A 32 bit unicode character

element unsignedInteger-32

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

used by element unionType/discriminant

annotation documentation An unsigned 32-bit integer

element unsignedLongInteger-64

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation An unsigned 64-bit integer

element unsignedShort-16

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation An unsigned 16-bit integer

element void-0

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of primitiveTypeType

annotation documentation An empty type 0 bits. Useful in unions for declaring the possible absence of a number.

complexType primitiveTypeType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of typeType

used by elements bit-1 byte-8 character-8 enum-32 ieeeDouble-64 ieeeFloat-32 ieeeQuadruple-128 integer-32
longInteger-64 primitiveType short-16 unicodeCharacter-32 unsignedInteger-32
unsignedLongInteger-64 unsignedShort-16 void-0

annotation documentation The superclass of all primitive types should always subclass

complexType typeType

namespace http://schemas.nesc.ac.uk/binx/binx

used by element type
complexTypes dataTypeType primitiveTypeType

annotation documentation The superclass of all types. This is where the basic attributes shared by all types are defined.

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 29

simpleType orderType

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of xsd:string

used by attributes representationDef/@bitOrder representationDef/@byteOrder

facets enumeration bigEndian
enumeration littleEndian

annotation documentation Big endian or little endian

attributeGroup representationDef

namespace http://schemas.nesc.ac.uk/binx/binx

used by elements dataset/arrayMultiFile dataset dataset/file
complexType typeType

annotation documentation The collection of attributes common to all types.

element array

namespace http://schemas.nesc.ac.uk/binx/binx

type arrayType

children type dim

annotation documentation Used to define the array substitution group and fix common properties of arrays.

element arrayFixed

namespace http://schemas.nesc.ac.uk/binx/binx

type arrayFixedType

children type dim

annotation documentation An array of fixed size. This can contain multiple dimensions (specified using the dim element).

element arrayStreamed

namespace http://schemas.nesc.ac.uk/binx/binx

type arrayStreamedType

children type dim dimStreamed

annotation documentation A streamed array. The slowest moving index (specified using the dimStreamed element) cannot be
constrained in size as it does not provide a indexTo field.

element arrayVariable

namespace http://schemas.nesc.ac.uk/binx/binx

type arrayVariableType

children type dim dimVariable

annotation documentation An array of variable size. The total size of this array is determined by a 32-bit integer value which
lies in the data file before the array elements start.

element dataType

namespace http://schemas.nesc.ac.uk/binx/binx

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 30

type dataTypeType

annotation documentation This tag is used to define the dataType substitution group it is not intended to be used directly.

element struct

namespace http://schemas.nesc.ac.uk/binx/binx

type structType

children type

annotation documentation This is a struct type which simply represents a sequence of other types. Structs can be assigned
names usng the typeDef mechanism.

element union

namespace http://schemas.nesc.ac.uk/binx/binx

type unionType

children discriminant case

annotation documentation This element is used to represent a declarative union. The first 32-bits of the data will be a
discriminant. This value will determine the type present (according to the values in the case-type
mappings).

complexType arrayFixedType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of arrayType

children type dim

used by element arrayFixed

annotation documentation Type definition for arrays in which the size of the array is included in the type definition.

complexType arrayStreamedType

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of arrayType

children type dim dimStreamed

used by element arrayStreamed

annotation documentation Type definition for streamed array. Streamed arrays have a final dimension (the slowest moving
one) in which the indexFrom attribute is removed so that the size of the array is left unspecified.

element arrayStreamedType/dim

namespace http://schemas.nesc.ac.uk/binx/binx

type dimType

element arrayStreamedType/dimStreamed

namespace http://schemas.nesc.ac.uk/binx/binx

type dimStreamedType

complexType arrayType

namespace http://schemas.nesc.ac.uk/binx/binx

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 31

type extension of dataTypeType

children type dim

used by element array
complexTypes arrayFixedType arrayStreamedType arrayVariableType

annotation documentation Superclass of all arrays

element arrayType/dim

namespace http://schemas.nesc.ac.uk/binx/binx

type dimType

complexType arrayVariableType

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of arrayType

children type dim dimVariable

used by element arrayVariable

annotation documentation Type definition for arrays in which the size determined by a single 32 bit integer located in the data
file before the array starts. These arrays can hav only one dimension specified by the
dimVariableType tag.

element arrayVariableType/dim

namespace http://schemas.nesc.ac.uk/binx/binx

type dimType

element arrayVariableType/dimVariable

namespace http://schemas.nesc.ac.uk/binx/binx

type dimVariableType

complexType dataTypeType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of typeType

used by elements dataType defType
complexTypes arrayType structType unionType

annotation documentation The type common to all datatype definitions. The term datatype is used here to refer to composite
types composed of multiple primitive types such as arrays, structs and unions.

complexType dimStreamedType

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of dimType

used by element arrayStreamedType/dimStreamed

annotation documentation This is intended to provide the slowest moving dimension in a streamed type. The difference here
is that the indexTo field is optional so accomodate an unspecified size of array.

complexType dimType

namespace http://schemas.nesc.ac.uk/binx/binx

used by elements dataset/arrayMultiFile/dim arrayType/dim arrayVariableType/dim arrayStreamedType/dim
complexTypes dimStreamedType dimVariableType

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 32

annotation documentation A description (name, index limits) of an array dimension. indexFrom is the starting index of the
array dimension indexTo is the final index both are specified in units of the array type (integer,
float, double etc.).

complexType dimVariableType

namespace http://schemas.nesc.ac.uk/binx/binx

type restriction of dimType

used by element arrayVariableType/dimVariable

annotation documentation The size of a variable array is speecified as an integer written in the first 32 bytes of the structure.
Variable sized arrays can have only one dimension and it cannot have and indexTo value.

complexType structType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of dataTypeType

children type

used by element struct

annotation documentation Type definition for the struct type, which represents a sequence of types

complexType unionType

namespace http://schemas.nesc.ac.uk/binx/binx

type extension of dataTypeType

children discriminant case

used by element union

annotation documentation Type definition for the union type, which represents a series of alternative type options chosen by a
32-bit integer discriminant.

element unionType/discriminant

namespace http://schemas.nesc.ac.uk/binx/binx

children integer-32 unsignedInteger-32 enum-32

element unionType/case

namespace http://schemas.nesc.ac.uk/binx/binx

children type

element xi:fallback

namespace http://www.w3.org/2001/XInclude

children xi:include

used by element xi:include

element xi:include

namespace http://www.w3.org/2001/XInclude

children xi:fallback

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc

EPCC-GDS-WP5-BinX v0.1 Unrestricted 33

used by elements definitions xi:fallback

XML Schema documentation generated with XML Spy Schema Editor www.xmlspy.com

http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://localhost/twiki/src/WP5/Binx-XML/binxdoc.doc
http://www.xmlspy.com/
http://www.xmlspy.com/

	Contents
	Introduction
	Motivation
	Related work

	BinX
	Current status

	JAJA
	Self describing files
	Future directions
	Acknowledgements
	References

	BinX requirements
	Overview of schema design
	Files
	File: binx.xsd
	The <dataset> tag
	The <defType> tag
	The <definitions> tag

	File: types.xsd
	Substitution Groups
	Common type attributes

	File:datatypes.xsd
	Arrays
	Structs
	Unions
	Other types

	Typedef mechanism
	XDR file types
	Modifiers
	Limitations and workarounds
	Self describing files

	Examples of use
	Example use cases
	Example BinX files
	Astronomical table
	Definitions
	File
	BinX

	XDR data file
	Definitions
	File

	Multiple file array example
	Definitions
	ArrayMultiFile

	A BMP picture file
	Definition
	File

	Future
	Binary Access Library
	XML Description Library
	GUI for writing/editing BinX files
	JAJA extensions
	Standards process
	Test cases
	Implied XML representation
	Transformations
	Units field
	Date/Time representation
	Classes vs. instances
	Variables
	Parameterised length relationships
	Parameterised typedefs

	Appendix A – XML Schema documentation

