
BinX Library Detailed Design Document
Design issues to be resolved:

1. Naming of file (dataFile) and typedef (typeDefinition) elements in schema
2. Unions
3. Variable sized and large structs.
4. Bit order (compiler??)
5. Multi file arrays
6. Void fields
7. Bit types (can’t read bit from file)
8. Chars in Java are 16 bit Unicode
9. Fortran arrays have funny indices.

Martin Westhead 24-7-02
Daragh Byrne 16-08-2002

The purpose of this document is to:

• Specify the requirements of the BinX library
• Outline the design of the library
• Outline the design and use of the API it will provide
• Indicate how the library will be implemented in C++

Terms
BinX XML file XML file that conforms to the BinX Schema used to describe a

binary data file referred to as a BinX data file.
BinX Data file Binary Data file which has a corresponding BinX description in

XML.
Configuration A particular combination of bit and byte order and blocksize.

Applies to a field in a data file.

BinX Library Requirements
The BinX library must have the basic functionality to:

1. Provide straightforward program read access to data in any binary file
described in BinX.

2. Provide the ability to programmatically describe the contents of a file and
write out the corresponding BinX XML and data files.

3. Provide sufficient functionality that the library can serve as a base for flexible
BinX applications.

In addition there are the following requirements

1. Efficiency (memory and CPU)
2. Access to raw data (bytes in file)
3. Access to data as structured fields
4. Access to additional BinX info (Field name etc.)
5. Static C interface.
6. Portability (Windows, Solaris, Linux at least)
7. Compile time configuration OR run time initialisation of native representation

(what is the local bit/byte ordering)
8. Thread safety (threaded file I/O)

Use cases

General Considerations
The design of this library is undertaken with specific uses in mind. This section aims
to describe some of these uses, and define how a programmer will use the BinX
library.

A BinX data file consists of a sequence of data elements. Note that some confusion
may arise between data elements and XML elements in the BinX XML document.
The API provided by this library operates by building a representation of these
elements in memory. The representation is created by reading a BinX XML file in the
case of reading data, or building it using other API calls in the case of writing. This
representation provides information about element size, element configuration and
element metadata, such as name, to the API internals.

In many cases the programmer will be writing applications to deal with a specific
class of files with a known structure. The programmer will know the names and types
of the main structures in the file, and will have an idea of the meaning of the data.
The BinX library must allow transparent, easy access to the data via the library. The
library must also allow the programmer to build a representation of a data file in
memory and write data corresponding to this representation. In this case the
corresponding XML file is also written. These kind of sequential read and write
operations are used in many applications already and this use of BinX in this manner
is therefore justified. The benefit is that the data gains cross system portability
accompanied by a structural description.

In other cases, the programmer will be writing general applications that deal with
arbitrary BinX files. An example of this would be a general purpose BinX data
browser. Another example would be an application that transforms the structure and
configuration (given bit and byte order and block-size etc) of a BinX data file to that
specified by a different BinX XML file (it is envisaged that this would be carried out
using some form of XSLT transformation). These cases are examples of using BinX
as a data manipulation and transformation tool.

There follow a number of specific use cases, each of which illustrate a different
aspect of using the library.

Using BinX to read data when structure is roughly known
The following steps describe the basic read mechanism in BinX.

1. The BinX XML file is read and a representation is built in memory. This
information is represented by an instance of BxDataset.

2. The programmer creates a BxDatasetReader object, initialising it with a
pointer to the instance of BxDataset.

3. The programmer sets the reader to read a particular file referenced in the
dataset.

4. The reader is asked for the values of data fields sequentially.

This is the approach used by the programmer when the structure of the data is
roughly known. The benefit of BinX in this situation is providing transparency with
respect to the original configuration of the data file and the system it is read on.

It is proposed that the programmer handle simple read cases in the following
manner. After initialising the BinX runtime environment (this does things like figure
out local byte orderings etc), the programmer creates a BxXmlFileReader object and
uses it to parse the XML file, returning a pointer to a BxDataset object. The
BxDataset object maintains references to the definitions of the data types in the file,
and a reference to the file element or elements concerned (this is implemented as a
collection of pointers to BxDataFile objects), within which the structure of the file is

defined. Allowance will be made for the fact that an arrayMultiFile element is allowed
in place of a file element.

BxDatasetReader and BxDatasetWriter objects are how the programmer interacts
with the dataset. The model is that the programmer asks the reader for data in a file
referenced by the dataset, or that the writer is asked to write the data. Given that the
programmer knows the overall structure of the data, it is up to him/her to make the
appropriate calls to read/write the data. If the programmer tries to write an integer
when the next data element is meant to be a float, the call will fail. The programmer
reads the data element by element, asking the reader objects sequentially for their
element values. The file element or file reader object keeps track of where in the file
we are reading from. It is possible to poll the DatasetReader/Writer object to obtain
the metadata about the next object to be read, without incrementing the file object’s
data pointer. Functionality will be provided to query the next element in the file about
its type and name without reading its value.

Internally, the BxDatasetReader object utilises the services of BxDataFileReader
objects. The role of these objects is to read raw data from the file. The raw data is
passed back to the BxDatasetReader object, which checks with the dataset if any
configuration transformations need to be carried out.

Consider the following simple example, without user-defined types:

<dataset>
 <definitions/><!- -empty - ->
<file src="data.bin">
 <integer-32 varName="code" comment=”some code for something”/>
 <arrayVariable varName="distances">
 <ieeeFloat-32/>
 <dimVariable>
 </arrayVariable>
 <ieeeFloat-32 varName=""/>
</file>

</dataset>

#include "BxXmlFileReader.h"
#include "BxSchemaElement.h"

// Program to read the data from the above BinX XML file and process in some way

int main()
{
 BxXmlFileReader* xmlReader = new BxXmlFileReader(“file.xml”)/// Reader for the
dataset
 BxDataSet* ds; /// provides data access

 // Initialise binx binary transformers for this platform
 // This sets local bit and byte ordering, and should be the
 // first line in any BinX program.
 BxRuntimeInfo::initialise();

 // parse the XML document and create the dataset
 ds = xmlReader->parse(xmlFile);
 // Set up a reader and initialise with a pointer to ds, for internal
 // reference when reading
 BxDatasetReader* reader = new BxDatasetReader(ds);
 reader->setFileByIndex(0); // initialises to read from the first file in the
dataset
 int code;
 char* name=0;

 // Read the next integer value
 code = reader->nextDataValueInt();

 // alternatively we can check ahead for the next element

 if(reader->checkNextName("code") && reader->nextIsInteger32())
 {
 code = reader->nextDataValueInt();
 }

 // now lets do the array. We read again thru the reader
 BxArrayValuesFloat* f; // convenient object for holding returned data from array
read

 f = reader->newNextDataValuesFloatArray(); //returns null on fail, object contains
count

 // or, for memory
 reader->newNextDataValueFloatArray(f, 100);// gets the next 100 elements
 // in the array and stores

 // or, between
 values= dfe->newNextDataValueFloatArrayBetween(&count, 0, 100);
 process(values); // does something with data
 delete [] values;

}

Example of read with defined datatypes

<dataset>
 <definitions>
 <typedef typeName="intensityData">
 <struct>
 <integer-32 varName="height"/>
 <integer-32 varName="length"/>
 <arrayFixed varName="intensity">
 <ieeeFloat-32/>
 <dim indexFrom="1" indexTo="100" varName="x"/>
 <dim indexFrom="1" indexTo="25" varName="y"/>
 </arrayFixed>
 </struct>
 </typedef>
 </definitions>
 <file src="sss.bin">
 <integer-32 varName="count"/>
 <defType typeName="intensityData"/>
 </file>
</dataset>

// struct for intensityData
typedef struct s_intensityData{
 int height;
 int length;
 float xy[100][25];
 } intensityData_t;

// Program to access values in the data file described above
int main()
{
 BxXmlFileReader* xmlReader = new BxXmlFileReader(“file.xml”);
 BxDataSet* ds;
 BxDatasetReader* reader;
 intensityData_t data;

 // initialise binx binary transformers for this platform
 // sets local bit and byte ordering
 // first line in any BinX program
 BxRuntimeInfo::initialise();

 // Parse the BinX XML file to obtain the data information
 ds = xmlReader->parse(xmlFile);
 reader = new BxDatasetReader(ds);
 reader->setFileByIndex(0);

 // Get the first file element in the dataset
 // Read the integer
 int count = reader->nextDataValueInt();

 // Deal with the structure next.

 // This is tricky, especially when the struct contains arrays.
 IntensityData_t* data;
 data = (intensityData_t *) reader-
>newVoidNextValueDataStruct(sizeof(intensityData_t));

}

Using BinX to write data
The following steps describe the basic BinX write mechanism.

1. The programmer builds a BxDataset object in memory by calls to the add
methods of the object. This is the representation of the BinX XML file.

2. The programmer creates an instance of BxDatasetWriter and initialises it with
a pointer to the dataset object.

3. The programmer initialises the writer to point at a particular file in the dataset.
4. Calls to the writer’s write methods are made passing appropriate data.

Consider the following example, where data is output to a binary in the form
described by the following BinX file.

<dataset>
 <definitions>
 <typedef typeName="pointType">
 <struct byteOrder=”bigEndian” bitOrder=”littleEndian”>
 <integer-32 varName="x"/>
 <integer-32 varName="y"/>
 </struct>
 </typedef>
 </definitions>
 <file name=”f.bin”>
 <Integer-32 varName="code"/>
 <arrayVariable varName="pointData">
 <defType typeName="pointType">
 <dimVariable>
 </arrayVariable>
 </file>
</dataset>

// this program writes an array of pointtypes to a file

int main()
{
 //initialise
 BxRuntimeInfo::initialise()

 BxTypedef* pointType = new BxTypedef(“pointType”);
 BxInteger32* bxIntX = new BxInteger32();
 bxIntX->setVarName(“x”);
 BxInteger32* bxIntY = new BxInteger32();
 bxIntY->setVarName(“y”);

 pointType->addElement(bxIntX);
 pointType->addElement(bxIntY); // these must be done in the appropriate order
 bxIntX = bxIntY = NULL; // control passed to typedef

 // the next thing to do is set up the dataset object to contain these definitions
 // and the details of the structure of the file
 BxDataset* ds = new BxDataset();
 ds->addDefinition(pointType);

 // this is the representation of the integer in the file element
 BxInteger32* someInteger = new BxInteger32;
 someInteger->setVarName("code");

 // we start a file element to add to the dataset
 BxDataFile* dfe = new BxDataFile(“f.bin”);
 dfe->addField(someInteger);

 // we next add a description of the array of structs
 BxArrayVariableDefinedType* dataArray =

 new BxArrayVariableDefinedType(pointType);

 dfe->addField(dataArray);

 // add the new file description to the dataset.
 ds->addFile(dfe);
 ds->initForWriting(); // does anything necessary.

 // So far we have created the dataset
 // The next step is writing to the corresponding file
 // One approach is to build the data in memory bit by bit and write out using the ds
 // data for the example
 int count = 100;

 // We need:
 // write mechanism for primitives
 // write mechanism for arrays
 // write mechanism for structs

 BxDatasetWriter* writer = new BxDatasetWriter(ds);
 if(!(writer->writeValueInteger32(count)))
 {
 // error
 }

 // We now demonstrate the procedure for writing structs and arrays.
 pointType[] points; int length;

 if(!writer->writeArrayStructs(points, sizeof(pointType), length))
 {
 //error
 }
 delete ds; //etc.

}

Note: it is possible for the dataset to be initialised by reading from an XML file in the
equivalent manner for reading.

A note on using the library
This is a brief description of how the library might be used to build data access and
manipulation tools. When performing structural or configuration changes on BinX
data, we make use of the implied XML representation of the data. Every BinX data
file could conceivably be expanded into an XML document. Often this will not be
practical as the size of the XML data would be too large for memory. In situations like
this it will be possible to use the functionality described above to sequentially read
the data in a BinX data file, and output the data as a stream of XML elements. This
stream can be interpreted as SAX/SAX2 events, and tools written to perform
transformations or queries on these events.

General tools for browsing arbitrary data sets may or may not be provided. The
functionality that we need in addition to that described in the preceding examples is
that which provides metadata about the BinX elements. This is described below.

Implementation
The rough structure of the proposed class hierarchy is illustrated in the following
diagram. See the accompanying UML model in BinX.mdl.

BxObject

BxReader BxWriterBxSchemaElementBxBitManipulator

BxBinxXmlFileReader BxDatasetWriter
BxOrderConverter

BxRuntimeInfoBxOrderCalculator

11 11

BxCollection

BxDatasetReader BxBinaryFileReader BxBinxXmlFileWriter BxBinaryFileWriter

BxArrayValues

BxDataFileReader
BxDataFileWriter

Class Design Overview
All classes are derived from the BxObject classes, which provides error logging,
string handling and other useful functionality, as well as a general interface to all
classes.

For consistency, all reader classes are derived from BxReader, and all writer classes
are derived from BxWriter.

The BxCollection template class functions as a dynamic, ordered collection of
pointers, and is used by a number of other classes.

Any element that can be present in a BinX XML file is derived from
BxSchemaElement. An extended class hierarchy for these objects is presented
below.

The remaining classes, BxOrderCalculator, BxOrderConverter and BxRuntimeInfo,
provide binary transformation and information services.

Class Functionality
In this section we discuss the functionality of the class hierarchy and propose where
various functions will be located. The functionality to be discussed will be as follows:

• BxSchemaElement reflection - on BxSchemaElement.
• Bx data type reflection – on BxTypedElement
• Access to data in binary file, converted – BxDatasetReader, BxDatasetWriter

objects using BxBinaryFileReader/Writer objects.
• Access to raw data –BxBinaryFileReader/Writer
• Access to metadata – BxSchemaElement/BxTypedElement
• Runtime order information - BxRuntimeInfo
• Type size – individual types
• Array values read or to be written: BxArrayValues and descendents

In the following examples any method calls that are to be exposed to the
user/programmer will be provided both as a conventional method call and a static

wrapper. A C interface will be provided in the form of appropriately modified global
functions.

The classes embody three main areas of functionality. These are:

BinX Element representation All classes derived from

BxSchemaElement, including primitive
and data types.

File Access and Manipulation BxReader and BxWriter derivatives
Binary Order and Type conversion BxOrderCalculator and associated

classes.

BxSchemaElement/BxTypedElement derived classes
The class hierarchy for the objects which model the schema elements looks like this:

BxSchemaElement

BxTypedElement

BxPrimitiveTypedElement BxTypeDefinition

BxDataset
dataFiles_ : BxCollection
definitions_ : BxCollection
currentFile_ : int10..* 10..*

<<collection>>

BxArrayMultiFile

0..*

1

0..*

1

BxDataFi le
0..*1 0..*1

<<collection>>

1

0..*

1

0..*

BxTypedElement
A typed element represents one of the allowed value types in BinX, be it primitive,
defined type or array. An object derived from this type contains information about the
configuration, size, variable-name and so on of a block of data in a BinX data file.
Each BxTypedElement derived class corresponds directly to one of the BinX types. A
BinX data file is considered to consist of an ordered collection of typed elements.
Typed elements are so called to distinguish them from elements that do not
represent data, such as the dataset element, or the file element.

It is necessary to provide a mechanism whereby the programmer can query an
individual BinX typed element for its type. This will be the case when general-
purpose tools are being provided. We will implement this at the level of
BxTypedElement, and all subclasses override the appropriate method.

The size of the typed element is also stored here, as is its offset in the binary file it is
stored in, if known. The size is set at compile time for the primitive types, but must be
calculated at runtime for the data types, hence the virtual methods. The offset may
also be unknown until the previous element has been read. Size is important when
dealing with structs to ensure the correct amount of data has been read, or the
correct amount of memory allocated etc. These should be implemented to log an
error at this level.

// in BxCppTypes.h
enum BxTypedElementType

{
typeShort16, typeUnsignedShort16, typeInteger32, typeUnsignedInteger32,
typeLongInteger64, typeUnsignedLongInteger64, typeIeeeFloat32, typeIeeeDouble64,
typeIeeeQuadruple128, typeBit1, typeUnicodeCharacter32, typeCharacter8, typeVoid0,
typeEnum32, typeArrayStreamed, typeArrayVariable, typeArrayFixed, typeStruct,
typeUnion
} //extend if necessary.

// BxTypedElement.cpp
class BxTypedElement:public BxSchemaElement{

private:
 char* varName_; // as only Typed elements can have variable
names.
 BxTypedElementType type_;
 int offsetInBytes_; // only meaningful here
 int sizeInBytes_;
 bool hasBeenRead_; // has the data represeneted by this object
been read before? Will be useful in extensions
 bool hasBeenWritten_;
 BxConfiguration* configuration; // Used by BxDatasetReader
// indicates what order transformations are required, calculated on parse
public:
// constructor/destructor
 BxTypedElement();
 ~BxTypedElement();
// accessing
 virtual BxTypedElementType getDataType();
 char* getVarName(); // name of the variable
 virtual void setDataType(BxTypedElementType typeToSet);
 virtual int getSizeInBytes();
 virtual void setSizeInBytes(); // subclassed e.g. by arrays etc
 virtual int getOffsetInBytes();
 virtual void setOffsetInBytes(); // needs to be calculated or read by object
 void setBitOrder(BxBitOrder bitOrder); // sets val of bitOrder_ in
configuration
 BxOrder getBitOrder();

 // methods to return the value of a particular type
 static BxTypedElementType getTypeShort16(){return typeShort16; };
 static BxTypedElementType getTypeUnsignedShort16(); //etc
 static BxTypedElementType getTypeInteger32();
 static BxTypedElementType getTypeUnsignedInteger32();
 static BxTypedElementType getTypeLongInteger64();
 static BxTypedElementType getTypeUnsignedLongInteger64();
 static BxTypedElementType getTypeIeeeFloat32();
 static BxTypedElementType getTypeIeeeDouble64();
 static BxTypedElementType getTypeIeeeQuadruple128();
 static BxTypedElementType getTypeBit1();
 static BxTypedElementType getTypeUnicodeCharacter32();
 static BxTypedElementType getTypeCharacter8();
 static BxTypedElementType getTypeVoid0();
 static BxTypedElementType getTypeEnum32();
 static BxTypedElementType getTypeArray();
 static BxTypedElementType getTypeArrayStreamed();
 static BxTypedElementType getTypeArrayVariable();
 static BxTypedElementType getTypeArrayFixed();
 static BxTypedElementType getTypeStruct();
 static BxTypedElementType getTypeUnion();
}

Configuration details
Every element in the BinX file has a certain configuration, i.e. bit and byte order and
blocksize combination. This may differ from element to element throughout the file.
These attributes are reified into the BxConfiguration class, which looks like the
following.

class BxConfiguration
{

private:
 BxBitOrder bitOrder_;
 BxByteOrder byteOrder_;
 int blockSize_;
public:
// getter and setter for each of these attributes, constructor, destructor.
}

Every BxSchemaElement contains an instance of this class, and child elements in
the XML file inherit the parent’s configuration, unless specified. In most cases, bit and
byte order will be uniform throughout the file.

Access to metadata
Presented at the BxSchemaElement level and overridden by subclasses. Note that
some of the metadata does not apply to all elements. Nevertheless we present the
interface at this level. The constructor should set these all to null/blank.

private:
 BxByteOrder byteOrder_;
 BxBitOrder bitOrder_;
 int blockSize_;
 bool ignore_;
 char* comment_;
 char* info_;

//Metadata Access
// N.B. for calls like blocksize we need to return the correct blocksize
// wherever (in the BinX file) that has been specified.
// public
 BxBitOrder getBitOrder(); // returns bit order
 BxByteOrder getByteOrder(); // returns byte order
 int getBlockSize(); // blocksize
 bool getIgnore(); // ignore field (e.g. padding)
 char* getComment(); // return user comment string
 char* getInfo(); // return info field
 // etc.

BxDataset
The BxDataset object contains all of the information about the dataset that is needed
to successfully read or write binary data. This means it contains information about the
structure of the files and the defined types involved. The developer asks this object
for a reference to the relevant file element, from which they then read, or to which
they then write.

private:
 BxCollection<BxTypedef*> typeDefs_; // info on the defined types
 BxCollection<BxDataFile* > fileElements_; // info on binary files
public:
 // accessing
 BxDataFile* getFileElement(int index) const; // returns pointer to file element
 void addFileElement(BxDataFile* dfe);
 BxTypedef getTypedef(int index) const;
 void addTypeDef(BxTypedef* td);

A note on memory management for this object: during the creation of this object,
BxTypedef and BxDataFile objects will be created and added to this object, be it by
the programmer in the case of a write, or a call to BxXmlFileReader::parse() in the
case of a read. Responsibility for these created objects then falls to the BxDataset
object, and the descructor must make sure to delete them.

BxDataFile
This element type represents a data file element from the schema and contains
details of the structure of the data file within it. Whenever a BxDatasetReader object

read call is made, reference is made to a BxDataFile object to see if the appropriate
read is being carried out. The same applies when writing is carried out.

private:
 BxCollection<BxTypedElement *> types_; // contains ordered collection of types in
file
 int currentIndex_; // points to current element, updated on
read
 // or write.
 BxDataFile dataFile_;
// methods private
 void incrementCurrentIndex();
 void decrementCurrentIndex();
public:
 // accessing
 void setDataFileName(char* fileName);
 char* newGetDataFileName();
 // binary data access simple API
 // all of these methods check the collection types_ to see if the next data in
 // the file is in fact an int, double etc

BxTypedef
This is a class that describes the elements that are contained by a struct or union. It
looks like:

class BxTypedef : public BxObject
{
 public:
 addElement (BxTypedElement type);
 BxTypeElement* getElementByIndex(int index);
 private:
 char* defTypeName;
 BxCollection<BxTypedElement* >; // collection of elements within the type
 // note any of these elements may also be a defined type.
 // have add, nextElement, elementAt etc methods

}

Primitive type implementations

BxPrimitiveTypedElement

BxIeeeDouble64ElementBxShort16Element

BxUnsignedShort16Element

BxInteger32Element BxUnsignedInteger32Element

BxLong64Element

BxUnsignedLong64Element

BxIeeeFloat32Element

BxIeeeQuadruple128Element
BxUnicodeCharacter32Element

BxCharacter8Element

BxByte8Element

The above are all directly derived from BxPrimitiveTypedElement, which derives from
BxTypedElement, and implement the functionality defined there. As stated
previously, these store details about size, metadata and offset for each of the
elements in the file. An example of implementation for BxInteger32 is given.

class BxInteger32Element : public BxTypedElement

{
// this inherits the following member variables from BxTypedElement:
// type_, offsetInFile_, sizeInFile_, configuration_;

private:

public:

}
BxInteger32Element::getSizeInFile()
{
 return sizeof(BxInteger32Value);
}
BxInteger32Element::BxInteger32Element(bitOrder, byteOrder, blockSize)
{
 setBitOrder (bitOrder);
 setByteOrder(byteOrder);
 setBlockSize(blockSize);
 sizeInFile = 4; // bytes
// etc
}

Arrays
Arrays may contain primitive types or defined types. Arrays have one or more
dimensions, and can be spread across one or more files. The basic array class
contains a variable number of dimension objects. The size of the array can generally
be determined by multiplying the element size by the number of elements, which can
be determined from the dimensions.

The library is expressly designed not to provide array access by element reference.
It is merely designed to provide configuration independent access to the data in the
files. It is thus proposed that in the case of multi dimensional arrays, the programmer
accesses the array as if it were one dimensional, and then performs whatever
processing necessary to extract the points required. This fits in with the performance
requirements of the library.

The array classes all inherit from the class BxArray. This contains a collection of
BxDimension objects, which represent each dimension of the array. BxArray looks
like:

class BxArray : public BxDataType
{
private:
 BxCollection <BxDim* > dimensions_;

public:
 int calculateSize();
}

// other array classes

class BxArrayElementShort16;
class BxArrayElementUnsignedShort16;
class BxArrayElementInteger32;
class BxArrayElementUnsignedInteger32;
class BxArrayElementLongInteger64;
class BxArrayElementUnsignedLong64;
class BxArrayElementDouble64; // etc

class BxArrayElementTypedef;

Array values
In order to pass the values stored in an array back from a read function, or to a write
function, we specify a number of container classes. The root class here is

BxArrayValues. All of these classes contain a long integer, which is the length of the
data. They also contain a BxTypedElementType variable, which is set in the
constructor and represents the type of the primitive elements. The subclasses
contain pointers to data of the appropriate type. These classes will be instantiated
with an integer, and space for the data will be allocated on instantiation. This is
mainly a set of convenience classes used to shuttle data from place to place. This
could be implemented as a template class.

Useful Binary/Data Functionality

C++ type mapping
We need to accurately define the mapping between each of the BinX primitive types
and the corresponding C++ type. This is done in BxCppType.h using a number of
typedefs.

typedef BxShort16Value short;
typedef BxUnsignedShort16Value unsigned short;
typedef BxInteger32 Value int;
typedef BxUnsignedInteger32Value unsigned int;
typedef BxLongInteger64 Value long int;
typedef BxUnsignedLongInteger64Value unsigned long int;
typedef BxIeeeFloat32Value float;
typedef BxIeeeDouble64Value double;
typedef BxIeeeQuadruple128Value long double;
typedef BxBxUnicodeCharacter32Value int;
typedef BxBit1Value bool; // ??
typedef BxCharacter8Value char;
//typedef BxVoid0 ??
//typedef BxEnum32 ??

BxOrder
This also appears in BxCppTypes.h and typedefs BxByteOrder and BxBitOrder as
ints. This defines the symbolic constants BIG_ENDIAN and LITTLE_ENDIAN.

#define BIG_ENDIAN 1
#define LITTLE_ENDIAN 0
typedef BxByteOrder int;
typedef BxBitOrder int;

BxOrderCalculator
The BxOrderCalculator provides the functionality to check they byte and bit ordering
of the local file-system and internal memory byte and bit orders. These are calculated
once at the start of the program and stored in static member variables belonging to
BxRuntimeInfo. Note local memory bit order is always big-endian.

#include “bxorder.h”

private:

public:

 BxByteOrder calcLocalMemoryByteOrder();
 BxByteOrder calcLocalFileByteOrder();
 BxBitOrder calcLocalFileBitOrder();

BxRuntimeInfo
This class contains a collection of static variables holding the bit and byte order on
the local system. These are calculated by calling BxRuntimeInfo::initialise(); itself

static. These static member functions are called by reader/writer functions to see
what transformations need to be carried out.

BxOrderConverter
This class takes data and converts the bit and byte ordering as required. The data is
passed using a pointer, so the transformed data can be stored in the original memory
location. The calls are implemented as static to avoid having to instantiate
transformer objects. This example demonstrates the API for double types.
Overloaded methods will be provided for every BinX C++ type.

private:

public:
 static void transformBitOrder(BxDouble *toTrans);
 static void transformByteOrder(BxDouble *toTrans);
 static void transformArrayBitOrder(BxDouble* toTrans, int length);
 static void transformArrayByteOrder(BxDouble* toTrans, int length);
 static void transformArrayBitByteOrder(BxDouble* toTrans, int length);

BinX Data Access
The class diagrams for file access can be seen in the main class hierarchy diagram
above.

BxDatasetReader, BxDatasetWriter
The APIs for reading and writing BinX binary data as described in the BinX XML file
is located on these objects. The objects are initialised with a reference to a
BxDataset object and make reference to it during the read/write process. The API will
look like the following.

 // 1) writing

 int nextValueInt(); // returns the next integer value in the file
 unsigned int nextValueUnsignedInt();

 double nextValueDouble();
 long double nextValueQuadruple();
 long int nextValueLongInt();
 unsigned long int nextValueUnsignedLong();
 short nextValueShort();
 unsigned short nextValueUnsignedShort();
 BxByte nextValueByte();
 char nextValueChar();
 nextValueUnicodeCharacter();

 // corresponding array calls
 // these do the type checking ie to see if the next array is one of ints etc
 int* newNextValuesArrayTo(int to, int* count);
 int* newNextValuesArrayAll(int* count);
 int* newNextValuesArrayBetween(int from, int to, int* count);
 … …
 void* newNextValuesArrayStruct(… sizeof(struct));
 // reading structs
 void* newNextReadStruct(int size); // pass sizeof(struct) and cast

 // 2) writing
 // all return success or not
 bool writeInteger(int toWrite);
 bool writeDouble(double toWrite);
 bool writeChar(char toWrite);
 bool writeLongInt(long int toWrite);
 bool writeUnsignedInt(unsigned int toWrite);
 bool writeUnsignedShort(unsigned short toWrite);
//etc.
 bool writeIntegerArray(int* toWrite, int numElements);
//etc.

Note that checking to see whether the appropriate method has been called is not
carried out here; rather, these objects call the methods of an instance of
BxDataFileReader/Writer which checks the details of the referenced BxDataFile.

BxXmlFileReader
This object handles the BinX Xml file that describes the BinX data file. This class
provides the functionality to parse the Xml file and build the dataset object. An outline
class structure is:

class BxXmlFileReader
{
private:

public:
 BxDataSet* parse();
 BxDataSet* parse(char *binxXmlFile);
 void validate(char* fileToValidate);
 void validate(char* fileToValidate, float schemaVersion);
}

Use cases are as above. The validate methods should provide the means to validate
an arbitrary XML file against the BinX schema, perhaps against different versions of
the schema. The DOM Parser is used to extract the information necessary to build
the representation.

BxXmlFileWriter
This file provides functionality to write an in memory dataset representation to a
physical file. This will be implemented using the DOM API, as this provides a
convenient means of building XML trees and writing them out. The following
illustrates its use.

// writing
BxDataSet ds;
// build up ds as normal, see above for API

BxXmlFileWriter* writer = new BxXmlFileWriter();
writer->writeXmlFile(ds, “filename.xml”); // writes binx xml file to filename.xml

BxDataFileReader, BxDataFileWriter
These provide functionality equivalent to the BxDatasetReader/Writer classes for the
BxDataFile object. They are utilised by BxDatasetReader/Writer. For the read, the
BxDatasetReader instantiates a BxDataFileReader for every data file in the data set.
These objects are initialised in the following manner:

BxDataFileReader* dfr = new BxDataFileReader(BxDataFile* dataFile);

Each of these objects provides an equivalent for each of the BxDatasetReader/Writer
API methods. These methods use a BxBinaryFileReader to read raw bytes from the
file. They then check the dataFile description for configuration information, and
perform the appropriate configuration transformations before passing the data
back to the caller in native representation.

BxBinaryFileReader
Unfinished!!!
This class provides raw, unconverted read access to bytes in the binary file. This is
the level where blocksize is taken into account, and the file pointer for each dataFile
is stored here also.

The methods provided will depend on a single method, readBytesRaw(). A seek or
padding method will also be provided to cope with blocksize.

public:
 // reader
 BxInteger32 readInteger();
 bool readIntegerArray();
 // etc
private:
 FILE * fp;

BxBinaryFileWriter
This class provides an interface to write data to a binary file. The methods of this
class are passed data with internal memory ordering and convert it to the correct
output ordering. For checking, the methods should return the number of bytes they
have written.

Other readers/writers
It is possible that we may wish to provide a random access read and write API. It is
proposed that this functionality be provided by
BxRandomAccessDatasetReader/Writer objects.

Summary of Data Access
The following diagram contains a summary of the read and write methods in terms of
the above objects.

BxBin aryFile Read er

BxDataFileReader

BxDatasetReader BxDatasetWriter

BxDa taFil eWriter

BxBinaryFileWriter

Checks data
conf ig uration an d
converts

Performs conversion
from native
configuration.

Writes raw data and
padding.

Reads raw data from
fi le, maintains fi le
po inter

API for writingAPI for reading

General Functionality
There will be a top level class BxObject to provide general functionality such as
logging, error functions, string comparison and manipulation functions etc.

The template class BxCollection provides dynamic array functionality for any type.

C/Fortran interfaces
We need to use the objects described above to create a set of C functions and
header files for use in C and possibly Fortran programs.

Implementation Plan
It is proposed that the implementation proceed along the following steps.

1. Build the library to deal with one file that contains primitive types only.
2. Modify to deal with arrays of simple types.
3. Modify to deal with multiple files.
4. Modify to deal with simple structures, i.e. small ones that do not contain other

structs or arrays.
5. Design a mechanism/API for dealing with heavily nested or large structs.
6. Deal with unions.

In order to achieve goal 1 above, we should follow this implementation path:
1. Build the order transformation and calculation and runtime objects: LARGELY

COMPLETE (2 days left)
2. Build BxSchemaElement, BxTypedElement, BxPrimitiveTypedElement and

the primitive types (4 days)
3. Build the raw binary Read/Write objects

(BxBinaryFileReader/BxBinaryFileWriter) accommodating for blocksize (5
Days each = 10 days)

4. Build the BxDataset object using the BxTypedElements already built to test it
(3 days)

5. Build the BxXmlFileReader/Writer objects(5 days each for initial version)
6. Build the BxDatasetReader/BxDatasetWriter objects (7.5 days each)

Component dependencies: the SchemaElement and derivatives are independent of
the order objects and can thus be developed in parallel. The dataset object can be
built once at least some of the element objects are built, or if a TestElement object is
built from the correct inheritance tree. The XmlFileReader/Writer objects can be built
once the dataset object is built. The binary reader and writer objects can be built
when we have at least one or two of the element objects built for testing (they need
the metadata).

Proposed path for two developers:

1. Halve the development of the SchemaElement objects and PrimitiveType
derivatives.

2. One developer develops the BinaryFileReader/Writer objects. The other
builds the Dataset object and the XMLFileReader/Writer object

3. One developer builds the BxDatasetReader and the other the writer.

Following a parallel path like this gives a development time of the order of 20 days.

In order to achieve step 2 of the overall development, the following steps need to be
carried out.

1. Code the array value container objects (8 days)
2. Code the array element objects (8 days)
3. Modify the reader/writer objects to deal with arrays (12 days)

Step 3 requires the following.

1. Code the struct element objects
2. Modify the reader and writer objects to deal with structs.

Directory structure
The directory structure in the CVS repository is arranged as follows. The code is in
the gridserve CVS repository. The module is src/WP5/Binx-LibCpp. In this module
are subdirectories src, containing the C++ files, documents containing project

documentation (including this one) and projects, which contains projects for Visual
Studio, Makefiles for Unix and any other build configuration. The subdirectory src
contains a further subdirectory called testbinx, which contains classes to run unit
tests on the BinX library classes.

Testing the BinX library
The BinX library needs to be tested on a number of levels. Of primary importance are
unit testing of the library class methods, functionality testing using generated and real
test data, and stress/performance testing to ensure we reach the performance goals.
It is also necessary to consider sources of test data. Platform independence of
written data is also necessary. We need be able to write data on one system and
successfully read it on another, as this is obviously a central requirement of the
library!

A note on testing this design: the design is under weekly technical review. The
people involved are generally happy with the state of the design and the evolution it
has been undergoing. It is hoped that this process will identify and correct any design
errors that reduce the degree of detail, intersection or merit of the design. Naturally
any faults discovered during implementation will be fed back into this document.

Test data
There are two main sources of test data: generated data used for unit/functional
testing, and real user data for functionality and performance testing.

We need a means of generating interim test data. It is proposed that some of the
code used in the Jaja demonstrator be modified for this purpose. This can be used to
output binary files according to accompany hand-written BinX XML files. Test data
should be provided for each stage of the development. Functionality borrowed from
the LEDataStream classes utilised by BinX can be utilised to provide little-endian
data.

Unit Tests
The unit test

Functionality
sd

Performance testing
asdf

Appendix – coding standards
C++ Coding Style Guidelines For BinX
GC 20/11/00

This document outlines the C++ coding style decided upon by the BinX team.
Following a set of guidelines will bring the following benefits.

1. Allow developers to switch between different sections of code without being
thrown by different styles (or no style at all).

2. Make the code appear much more professional when examined by third
parties (who may have financial influence).

1. Should allow the generation of automatic source documentation.

Fil

• chemaElement.h and
BxSchemaElement.cpp for class BxSchemaElement.

Header Files

.

• e inclusions. Use BinX_[Class] for
the name of the variable being defined eg.

lement
s definition

 #endif

Naming

• prefixed with 'Bx' to prevent problems when integrating

• rds, each with a

•
ords are capitalised), with a trailing underscore eg.

• names (apart from

• s for instance variables

• al variables eg. cancel(),

• the first letter of the acronym
only eg. BxWriterXml instead of BxWriterXML.

Auto Documentation

es General
• Header files have a .h suffix eg. BxObject.h.
• Code files have a .cpp suffix eg. BxObject.cpp

Files take their name from the class eg. BxS

• No method bodies in the header files unless inlined.
• No inlined methods unless absolutely necessary for speed
• Only one class per header file (and hence per code file).

Use #ifndef in header files to prevent multipl

#ifndef BinX_BxSchema
BinX_BxSchemaE

Element
#define
... clas

All class names are
with external code.
All class names are a concatenation of one or more wo
leading capital. eg. BxSchemaElement, BxTypedElement.
Instance variables are a concatenation of one or more words (where the
second and subsequent w
type_, value_, dataSet_.
Class (static) variables follow the same rules as for class
the 'Bx' prefix), but have a trailing underscore eg. Value_.
Local (temporary) variables follow the same rules a
but without the trailing underscore eg. name, value.
Method names follow the same rules as for loc
schedule(...), isArray(), handle(), logClassName().
Acronyms in names are handled by capitalising

Doxygen has been chosen as the tool for producing automatic documentation from
our C++ files. See http://www.stack.nl/~dimitri/doxygen for details. It has been
chosen in preference to doc++ as it can produce output in a variety of formats, and

http://www.stack.nl/~dimitri/doxygen/

allows instance variables to be commented on the same line, helping to keep the
source code readable.

The basic idea is that code comments are formatted in a special Doxygen way,

erarchy diagrams etc.

The a Doxygen
com

1. All API methods in .cpp files should have a Doxygen comment.

omment is being associated with the thing to the left.

to specify a new paragraph within a large

paragraph.

/// <P> And this is the start of another one.

To run

1. ogged in as gridserve eg. by typing \\sambahost\gridserve

2. e directory where your
source code lives.

 the doxy.bat file. This will generate a doc subdirectory in your current
directory and fill it with lots of auto documentation.

Comments

• so include normal
punctuation such as full stops.

ining what the
class does eg. for BxSchemaElement.h:

// Id
//
/// p
// ####

expanded to contain versioning information

about the file.
a comment explaining

briefly what they represent eg.

allowing the tool to pick them up and produce pretty HTML source code descriptions
and class hi

 following policy is recommended for deciding what should have
ment.

2. Method declarations in .h files need NOT have a Doxygen comment
(pointless duplication).

There are various options for the format of a Doxygen comment. My preferred one is
/// (C++ style with an extra slash).

For documenting variables on the same line you can use ///<. The < is supposed to
mean that the c

You can use HTML tags such as <P>
comment eg.

/// This is the end of a long
///

doxygen from a PC:

Make sure you are l
into a file browser and entering the appropriate password when it asks you.
Copy ~gridserve/tools/doxygen/doxy.bat file to th

3. Execute

Comments are meant to be in English and

• All header files should have a comment at the top expla

// ##
// BinX

Su erclass of all elements in a BinX file

• Note that the comment should also include the string Id. On check-in to
CVS, this string is automatically

• All variables declared in header files should have

 BxBinaryFileReader* client_; ///< Reader for raw data

A method whose name doesn't fully reveal its purpose should have a short comment
referably on the same line for readability eg.

ess.
values.

 void logObject() const; // Print out class name and variables.

ment in the code file. At the minimum it should describe what the
method is trying to achieve, what it should return, and any side-effects or

led by simulation engine. The timer has 'gone off'.
E EFFECT: Wakes up the client.

 ...

er line. This helps
prevent comments being left behind when cutting and pasting. Unfortunately, for

ork the comment must come before the opening {.

.. The second is 'Accessing.',
containing basic access methods for the class (eg. get and set for key variables).

abetical order for protocols. For example,
instance variables usually (always if you ask me!) go in the protected or private

n 'Instance Data' protocol eg.

.
 int numInstances_; ///< Number of instances of this class.

In header files, method declarations go on consecutive lines, with a single blank line
eadings eg.

 void send (BxPacket* p, int outputIndex); // For communication to

In code files, method definitions are separated by a single blank line, with two blank
ocol headings eg.

in the header file, p

 // Diagnostics.
addr void logClassName() const; // Print out the object's class and

 virtual void logVars() const; // Print info about current variable

 void logObjectl() const; // As logObject() but with newline.

All methods which have anything more than an utterly obvious single-line body
should have a com

assumptions. eg.

void BxOpTimer::expire()
/// Cal

/ SID//
{

}

Note that this comment has been put below the method head

Doxygen to w

Protocols

To ease location, methods are grouped into protocols. The first protocol is
'Initialising.', containing constructors and destructors etc

Subsequent protocols are added in alphabetical order.

The class definition is split into public, protected and private sections (in that order),
so it may not be possible to adhere to alph

sections in a

 protected:
 // Instance Data.
 OTclManager* manager_; ///< Pointer to the sole manager instance

 char* metaName_; ///< The name of the class's class (!).

before protocol h

 // Accessing.
 virtual char* className() const;

 // Packet Handling.

 void receive(BxPacket* p, int inputIndex); // simulation engine.

lines before prot

 // Accessing.

 char* BxOrderCalculator::className() const {
 return " BxOrderCalculator";

cket* p)
 Subclased to send this packet out to the simulation engine.

 {

col order, the order of method bodies in the code file should be
the same as the order of method declarations in the header file (again to assist in

La

e

• , where helpful, to improve readability. This may mean
aligning equals signs or variable declarations within methods, or comments in

elayTime_ = delayTime;
 packet_ = NULL;
 ti r
}

•

y method longer than that! Dividing algorithms into smaller
r

• not the variable name eg.
nd

• andard ones (eg. stdio) go first in angle
brackets, followed by the others in quotes. It's helpful to say why something's

/ For printf.
include <string.h> // For strlen, strcpy.

#include <stdarg.h> // For multiple arguments like printf.

ans "this method will not modify any of the
object's variables". Next to an argument it means "this method will not modify the

BxParameter* paramNamed(const char* name) const;

 }

 // Packet Handling.

 void BxExtOutputPort::send(BxPa
 ///

 extModel_->send(p, index_);
 }

Regardless of proto

finding methods).

yout General

• Tabs are 2 spaces wide (prevents 'staircase' appearance and leaves spac
for comments at the end of a line).
Alignment is used

header files eg.

BxDelay::BxDelay(double delayTime) {
 d

me _ = sim()->factory()->newTimer(this);

Method bodies should ideally contain less than about 12 lines of code.
although up to an emacs page in length is okay. There should be a good
reason for an
chunks often reduces errors and allows reuse of lower-level sections in othe
algorithms.
The * for pointers should be attached to the type
char* str not char *str. This is because the * alters the type of the variable a
so is better associated with the type definition.
When #including other files, the st

been included eg. in Object.cpp:

#include <stdio.h> /
#

#include "BxObject.h"

Use of Const Keyword

The keyword const should be used wherever possible to increase the safety of the
code. Next to a method declaration it me

argument in any way". Example of both:

Use of Virtual Keyword

When 'overriding' or 'subclassing' methods, they should be declared virtual.
Technically it is sufficient to declare only the top-level version (ie. the one highest up
the class hierarchy) as virtual. However, to make it obvious which methods are ripe
for overriding, all versions should have the virtual keyword too. Eg. In BxObject:

 // Accessing.
 virtual char* className() const; // Each subclass should override.

Then again in BxBlackBox:
 virtual char* className() const;

Ultimate Superclass

All new classes are made descendents of BxObject in order to inherit various generic
functionality as described below.

Messages for Developers

• Diagnostic messages should use the inherited logf not printf. Doing so will
allow such messages to be easily turned off in a customer build.

• Other diagnostic methods are inherited from BxObject eg. logClassName(),
logVars(), logObject() etc.

• Note that all new classes should override the method className() as this is
called by some of the diagnostic methods.

Messages for Users

These should be logged with inherited methods userError(...), userWarn(...), or
userInfo(...), depending on the severity of the condition. Using these methods will
ensure consistency in the information displayed to the user.

Example Header File
// ##
// BinX
// Id
//
/// Class representing a delay primitive which holds a packet for a
/// specified time and then sends it on. Any new packets arriving while
/// a packet is being held are dropped.
// ##

#ifndef BinX_BxDelay
#define BinX_BxDelay

#include "BxPrimitive.h"
#include "BxTBxer.h"

class BxDelay : public BxPrimitive {
 public:
 // Initialising.
 BxDelay(double delay);
 ~BxDelay();

 // Accessing.
 virtual char* className() const;

 // Packet Handling.
 virtual void receiveFrom(BxPacket* p, BxPort* port);

 // Timer Handling.
 virtual void wakeUp(BxTimer* timer); // Respond to timer by sending packet.

 private:
 // Instance Data.
 BxTimer* timer_; ///< Timer for implementing the delay.
 BxPacket* packet_; ///< The current packet being delayed.
 double delayTime_; ///< Time by which packets are delayed.
};

#endif

Example Code File
// ##
// BinX-DiffServ
// ##

#include "BxDelay.h"

// Initialising.

BxDelay::BxDelay(double delayTime) {
 delayTime_ = delayTime;
 packet_ = NULL;
 timer_ = sim()->factory()->newTimer(this);
}

BxDelay::~BxDelay() {
 delete timer_;
}

// Accessing.

char* BxDelay::className() const {
 return "BxDelay";
}

// Packet Handling.

void BxDelay::receiveFrom(BxPacket* p, BxPort* port)
/// Delay the argument packet, or drop it if we've got one already.
{
 if (timer_->isPending()) {
 // Sending us packets faster than we can cope with them.
 // Drop the new packet.
 delete p;
 logf("BxDelay dropped packet\n");
 return;
 }
 packet_ = p;
 timer_->schedule(delayTime_);
}

// Timer Handling.

void BxDelay::wakeUp(BxTimer* timer)
/// The timer has gone off so send the packet on.
{
 if (timer_ != timer) {
 userError("BxDelay::wakeUp", "woken up by an external timer");
 }
 send(packet_);
 packet_ = NULL;
}

Policy for JAVA Code
To be done…

	BinX Library Detailed Design Document
	Terms
	
	BinX XML file

	BinX Library Requirements
	Use cases
	General Considerations
	Using BinX to read data when structure is roughly known
	Example of read with defined datatypes
	Using BinX to write data
	A note on using the library

	Implementation
	Class Design Overview

	Class Functionality
	
	BinX Element representation
	File Access and Manipulation
	Binary Order and Type conversion

	BxSchemaElement/BxTypedElement derived classes
	BxTypedElement
	Configuration details
	Access to metadata
	BxDataset
	BxDataFile
	BxTypedef
	Primitive type implementations
	Arrays
	Array values

	Useful Binary/Data Functionality
	C++ type mapping
	BxOrder
	BxOrderCalculator
	BxRuntimeInfo
	BxOrderConverter

	BinX Data Access
	BxDatasetReader, BxDatasetWriter
	BxXmlFileReader
	BxXmlFileWriter
	BxDataFileReader, BxDataFileWriter
	BxBinaryFileReader
	BxBinaryFileWriter
	Other readers/writers
	Summary of Data Access

	General Functionality
	C/Fortran interfaces
	Implementation Plan
	Directory structure

	Testing the BinX library
	Test data
	Unit Tests
	Functionality
	Performance testing

	Appendix – coding standards
	C++ Coding Style Guidelines For BinX
	
	GC 20/11/00

	Files General
	Header Files
	Naming
	Auto Documentation
	Comments
	Protocols
	Layout General
	Use of Const Keyword
	Use of Virtual Keyword
	Ultimate Superclass
	Messages for Developers
	Messages for Users
	Example Header File
	Example Code File
	Policy for JAVA Code

