SciDAC Software Infrastructure for Lattice Gauge Theory

DOE meeting on Strategic Plan --- April 15, 2002

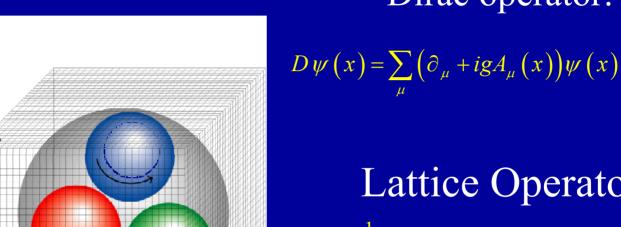
Software Co-ordinating Committee

- •Rich Brower --- Boston University
- •Carleton DeTar --- University of Utah
- •Robert Edwards --- Jefferson Laboratory
- •Don Holmgren --- Fermi National Laboratory
- •Bob Mawhinney --- Columbia University/BNL
- •Celso Mendes --- University of Illinois
- •Chip Watson --- Jefferson Laboratory

SciDAC Software Infrastructure Goals

• Create a unified programming environment that will enable the US lattice community to achieve very high efficiency on diverse multi-terascale hardware

Major Software Tasks


- I. QCD API and Code Library
- **II.** Optimize Network Communication
- **III.** Optimize Lattice QCD Kernels
- **IV.** Application Porting and Optimization
- V. Data Management and Documentation
- **VI.** Execution Environment

Participants in Software Development Project

Bob Mawhinney	Columbia		
Chulwoo Jung	BNL	100%	Sept 1, 2001
Chris Miller	BNL	100%	
Konstantin Petrov	BNL	100%	June 1, 2002
Don Holmgren	FNAL	40%	
Jim Simone	FNAL	35%	
Simon Epsteyn	FNAL	10%	
Amitoj Sing	FNAL	100%	Jan 22, 2002
Daniel A. Reed	Illinois		
Celso L. Mendes	Illinois	35%	Oct 1, 2001

Robert Edwards	Jlab		
Chip Watson	Jlab	33%	
Walt Akers	Jlab	100%	Jan 1, 2002
Jie Chen	Jlab	100%	Jan 1, 2002
Andrew Pochinsky	MIT	100%	
Richard Brower	BU	30%	
New Hire	BU	100%	(Oct 1, 2002)
Carleton DeTar	Utah		
James Osborn	Utah	50%	Sept 1, 2001
Doug Toussaint	Arizona		
Eric Gregory	Arizona	50%	Oct 15, 2001

Lattice QCD – extremely uniform

Ψlx+1[°]

Dirac operator:

Lattice Operator: $D\psi(x) = \frac{1}{2a} \sum_{\mu} \left[U(x)\psi(x+\hat{\mu}) - U^{\dagger}(x-\hat{\mu})\psi(x-\hat{\mu}) \right]$

- Periodic or very simple boundary conditions
- SPMD: Identical sublattices per processor

QCD-API Level Structure

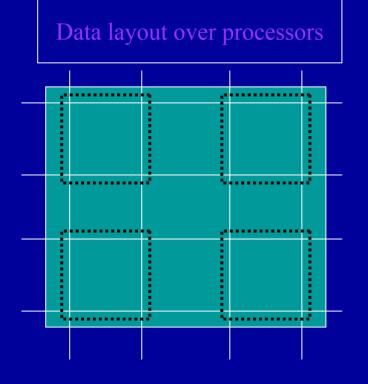
Level 3

Dirac Operators, CG Routines etc. C, C++, etc.

(Organized by MILC or SZIN or CPS etc.)

QDP_XXX Level 2

Data Parallel QCD Lattice Operations (overlapping Algebra and Messaging)


A = SHIFT(B, mu) * C; Global sums, etcLattice Wide Linear Algebra
(No Communication)Lattice Wide Data Movement
(Pure Communication, non-blocking)e.g. A = B * Ce.g Atemp = SHIFT(A, mu)

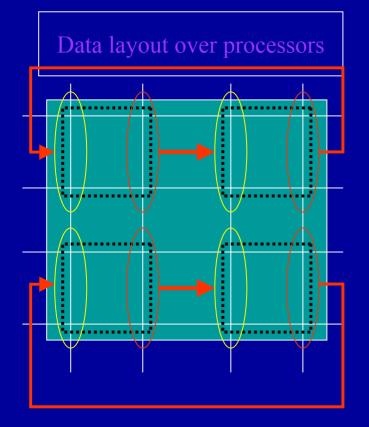
QLA_XXX Lev	vel 1 QMP_XXX
Single Site Linear Algebra API	Message Passing API
SU(3), gamma algebra etc.	(Know about mapping of Lattice onto Network Geometry)

I. Design & Documentation of QCD-API

- Major Focus of Software Co-ordinating Committee
 - Working documents on http://physics.bu.edu/~brower/SciDAC
 - Published documents to appear on http://www.lqcd.org
- Design workshops: Jlab: Nov. 8-9, 2001, Feb 2, 2002
 Next Workshop: MIT/BU: June, 2002 after Lattice 2002
- Goal:
 - C and C++ implementation for community review by Lattice 2002 in Boston, MA.
 - Foster "Linux style" contributions to level 3 API library functions.

Data Parallel paradigm on top of Message Passing

- Basic uniform operations across lattice: C(x) = A(x)*B(x)
- Map grid onto virtual machine grid.
- API should hide subgrid layout and subgrid faces communicated between nodes.
- Implement API without writing a compiler.


API Design Criteria

- Routines are extern C functions callable from C and Fortran: extern functions <==> C++ methods.
- Overlapping of computation and communications.
- Hide data layout: Constructor, destructors. Query routines to support limited number of deftypes.
- Support for multi-process or multi-threaded computations hidden from user control.
- Functions do not (by default) make conversions of arguments from one layout into another layout. An error is generated if arguments are in incompatible.

II. Level 1 MP-API implementation

- Definition of MP interface (Edwards, Watson)
 - Bindings for C, C++ and eventually Fortran.
 - see doc http://www.jlab.org/~watson/lqcd/MessageAPI.html
- Implementation of MP-API over MPI subset (Edwards)
- Implementation of C++ MP-API for QCDOC (Jung)
- Myrinet optimization using GM (Jie Chen)
- Port of MILC code to level 1 MP-API (DeTar, Osborn)

Performance Considerations for Level 2

- Overlapping communications and computations:
- C(x)=A(x)*shift(B,mu):
 - The face of a subgrid is sent nonblocking to a neighboring node, e.g. in the forward direction.
 - The neighboring node, in the backward direction, sends its face into a preallocated buffer.
 - While this is going on, the operation is performed on the interior sites.
 - A "wait" is issued and the operation is performed on the face.

Lazy Evaluation for Overlapping Comm/Comp

Consider the equation

dest(x) = src1(x)*src2(x+nu); (for all x)

or decomposed as

tmp(x) = src2(x+mu);dest(x) = src1(x)*tmp(x)

Implementation 1: As two functions:

Shift(tmp, src2, mu,plus); Multiply(dest, src1, tmp);

Implementation 2: Shift also return its result:

Multiply(dest, src1, Shift(src2, mu,plus));

Data Types

- Fields have various types (indices): Color: $U^{ij}(x)$, Spin: $\Gamma_{\alpha\beta}$, $\psi^{i}_{\alpha}(x)$, $Q^{ij}_{\alpha\beta}(x)$
- Index type (i.e the "fiber" over "base" lattice site)
 - Gauge : Product(Matrix(Nc),Scalar)
 - Dirac: Product(Vector(Nc),Vector(Ns))
 - Scalars: Scalar
 - Propagators: Product(Matrix(Nc),Matrix(Ns))?
- Support Red/Black sublattices & other subsets (Mask ?)
- Support compatible operations on types:

 $U^{ij}(x) * \Gamma_{\alpha\beta} * \psi^{i}_{\alpha}(x) \implies \text{Matrix(color)*Matrix(spin)*Vector(color,spin)}$

C Naming Convention for Level 2

• void QCDF_mult_T3T1T2_op3(Type3 *r, const Type1 *a,constType2*b)

•T3, T1, T2 are short for the type Type1, Type2 and Type3 : LatticeGaugeF, LatticeHalfFermionF, LatticePropagatorF

• *op3* are options like

nnr	r = a * b	nnn	r = -a*b
ncr	r = a*conj(b)	ncn	r = -a*conj(b)
cnr	r = conj(a)*b	cnn	r = -conj(a)*b
ccr	r = conj(a)*conj(b)	ccn	r = -conj(a)*conj(b)
nna	$r = r + a^*b$	nns	$r = r - a^*b$
nca	r = r + a*conj(b)	ncs	r = r - a*conj(b)
cna	r = r + conj(a)*b	cna	r = r - conj(a)*b
cca	r = r + conj(a)*conj(b)	CCS	r = r - conj(a)*conj(b)

Data Parallel Interface for Level 2

Unary operations: operate on one source into a target

Lattice_Field Shift(Lattice_field source, enum sign, int direction); void Copy(Lattice_Field dest, Lattice_Field source, enum option); void Trace(double dest, Lattice_Field source, enum option);

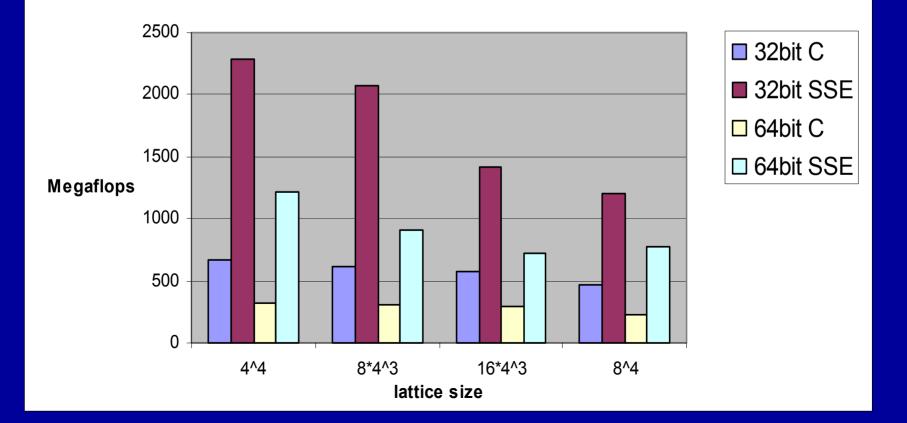
Binary operations: operate on two sources into a target

void Multiply(Lattice_Field dest, Lattice_Field src1, Lattice_Field src2, enum option); void Compare(Lattice_Bool dest, Lattice_Field src1, Lattice_Field src2, enum compare_func);

Broadcasts: broadcast throughout lattice void Fill(Lattice_Field dest, float val);

Reductions: reduce through the lattice void Sum(double dest, Lattice_Field source);

III. Linear Algebra: QCD Kernels


• First draft of Level 1 Linear Algebra API (DeTar, Edwards, Pochinksy)

http://www.jlab.org/~edwards/qcdapi/LinAlg1API_0_1.htm

- Vertical slice for QCD API (Pochinsky)
 API conformant example of Dirac CG
 MILC implementation (Osborn)
- Optimize on Pentium 4 SSE & SSE2 code:
 - for MILC (Holgrem, Simone, Gottlieb)
 - for SZIN 1 (Edwards, McClendon)

Single Node

Performance in Megaflops for single-node Dirac operator, 1.7 GHz Pentium 4 Xeon

IV. Application Porting & Optimization

- MILC: (revision version 6_15oct01)
 - QCDOC ASIC simulation of MILC (Calin, Christan, Toussaint, Gregory)
 - Prefetching Strategies (Holgren, Simone, Gottlieb)
- SZIN: (new documentation and revision) (Edwards)
 - Implementation on top of QDP++ (Edwards, Pochinsky)
 - Goal: efficient code for P4 by Summer 2002
- CPS (Columbia Physics System)
 - Software Testing environment running on QCDSP (Miller)
 - Native OS & fabric for MP-API (Jung)

V. Data Archives and Data Grid

- File formats and header
 - Build on successful example of NERSC QCD archive
 - Extend to include lattice sets, propagators, etc.
- Consider XML for ascii headers
 - Control I/O for data files
 - Search user data using SQL to find locations.
- Lattice Portal
 - Replicate data (multi-site), global tree structure.
 - SQL-like data base for storing data and retrieving
- Web based computing
 - batch system and uniform scripting tool.

VI. Performance and Exec. Environment

- Performance Analysis Tool:
 - SvPABLO instrumentation of MILC (Celso)
 - Extension through PAPI interface to P4 architecture (Dongarra)
- FNAL Tools:
 - Trace Tools extension to Pentium 4 and instrumentation of MILC (Rechenmacher, Holmgen, Matsumura)
 - FNAL "rgang" (parallel command dispatcher)
 - FermiQCD (DiPierro)
- Cluster Tools: (Holmgren, Watson)
 Building, operations, monitoring, BIOS update, etc

SvPablo Instrumentation of MILC

svPa	blo		 Legend: Source Code Metrics
<u>P</u> roject <u>I</u> nstrument <u>V</u> iew <u>G</u> enCallGraph		Help	Column 1: Call Statistics count
Project Description: MILC on IA-64 (version of Apr	ii–2000)	a _b lo	6 1
Source Files:	Performance Contexts:		Column 2: Call Statistics Duration
control.c	IA-64 with 4 Processors, L=12		710.887
setup.c update.c			2.4e-05
d_congrad5.c			Column 3: Loop Statistics count
com_mpi.c	<u> </u>		
Routines in Source File	Routines in Re Call Statistics		1
main initialize_machine g_sync	ks_congrad dslash_spec scalar_mult	4	Column 4: Loop Statistics Duration 848.401
setup_analyze	mult_su3_m mult_adj_su Dismiss Help		848.401
Source File: /u/ncsa/svpablo/Celso/MILC-INSTR/so			Column 5: HW Statistics by Line Floating Point Instruct 7.12497e+09
/* do the trajectories	*/ Specific Metric		o
s_iters=update();	Call Statistics Duration:		
/* measure every "propin			Column 6: HW Statistics by Line Level 1 Data Cache M 2.8531e+09
if((traj_done*propinte:	rval) == (pro	-	43
/* generate /	a pseudofermi Dismiss Help	_	Column 7: HW Statistics by Line Data TLB Misses
/* do conjuga		hi	9.90391e+07
<pre>m_iters=ks_congrad(F_OFFSE'</pre>			3
/* call plaquette m			Column 8: HW Statistics by Line MFLOPS
→ → d_plaquette(&ssplaq, &stplag	g);		134.706
ssplag *= -1.0; stplag *= -	-1.0; /* KS phases change sign */		
	and fermion energy/pressure measureme	ent =	
/* it also measures /* it also measures /* it also measures /* it also measures	<pre>the pseudofermionic action */ energy,&f pressure,&f action);</pre>		
/* call the Polyakov loop i			
l	♦ View Line Data		Dismiss