
SciDAC Software Infrastructure for
Lattice Gauge Theory

DOE meeting on Strategic Plan --- April 15, 2002

Software Co-ordinating Committee

•Rich Brower --- Boston University

•Carleton DeTar --- University of Utah

•Robert Edwards --- Jefferson Laboratory

•Don Holmgren --- Fermi National Laboratory

•Bob Mawhinney --- Columbia University/BNL

•Celso Mendes --- University of Illinois

•Chip Watson --- Jefferson Laboratory

Software Co-ordinating Committee

•Rich Brower --- Boston University

•Carleton DeTar --- University of Utah

•Robert Edwards --- Jefferson Laboratory

•Don Holmgren --- Fermi National Laboratory

•Bob Mawhinney --- Columbia University/BNL

•Celso Mendes --- University of Illinois

•Chip Watson --- Jefferson Laboratory

SciDAC Software Infrastructure Goals
• Create a unified programming environment that will

enable the US lattice community to achieve very high
efficiency on diverse multi-terascale hardware

Major Software Tasks

I. QCD API and Code Library

II. Optimize Network Communication

III. Optimize Lattice QCD Kernels

IV. Application Porting and Optimization

V. Data Management and Documentation

VI. Execution Environment

Major Software Tasks

I. QCD API and Code Library

II. Optimize Network Communication

III. Optimize Lattice QCD Kernels

IV. Application Porting and Optimization

V. Data Management and Documentation

VI. Execution Environment

Participants in Software Development Project

Bob Mawhinney Columbia ----
Chulwoo Jung BNL 100% Sept 1, 2001
Chris Miller BNL 100%
Konstantin Petrov BNL 100% June 1, 2002
Don Holmgren FNAL 40%
Jim Simone FNAL 35%
Simon Epsteyn FNAL 10%
Amitoj Sing FNAL 100% Jan 22, 2002
Daniel A. Reed Illinois ----
Celso L. Mendes Illinois 35% Oct 1, 2001

Robert Edwards Jlab ----
Chip Watson Jlab 33%
Walt Akers Jlab 100% Jan 1, 2002
Jie Chen Jlab 100% Jan 1, 2002
Andrew Pochinsky MIT 100%
Richard Brower BU 30%
New Hire BU 100% (Oct 1, 2002)
Carleton DeTar Utah ----
James Osborn Utah 50% Sept 1, 2001
Doug Toussaint Arizona ----
Eric Gregory Arizona 50% Oct 15, 2001

Lattice QCD – extremely uniform
Dirac operator:

() ()() ()D x igA x xµ µ
µ

ψ ψ= ∂ +∑

Lattice Operator:
() () () ()†1 ˆ ˆ ˆ()

2
D x U x x U x x

a µ

ψ ψ µ µ ψ µ = + − − − ∑

• Periodic or very simple
boundary conditions

• SPMD: Identical
sublattices per processor

QCD-API Level Structure

Dirac Operators, CG Routines etc.
C, C++, etc.

(Organized by MILC or SZIN or CPS etc.)

Level 3

Data Parallel QCD Lattice Operations
(overlapping Algebra and Messaging)

A = SHIFT(B, mu) * C; Global sums, etc

QDP_XXX Level 2

Lattice Wide Linear Algebra
(No Communication)

e.g. A = B * C

Lattice Wide Data Movement
(Pure Communication, non-blocking)

e.g Atemp = SHIFT(A, mu)

QLA_XXX Level 1 QMP_XXX

Single Site Linear Algebra API

SU(3), gamma algebra etc.

Message Passing API
(Know about mapping of Lattice

onto Network Geometry)

I. Design & Documentation of QCD-API

• Major Focus of Software Co-ordinating Committee
– Working documents on http://physics.bu.edu/~brower/SciDAC
– Published documents to appear on http://www.lqcd.org

• Design workshops: Jlab: Nov. 8-9, 2001, Feb 2, 2002
– Next Workshop: MIT/BU: June, 2002 after Lattice 2002

• Goal:
– C and C++ implementation for community review by Lattice 2002

in Boston, MA.
– Foster “Linux style” contributions to level 3 API library functions.

Data Parallel paradigm on top of Message Passing

• Basic uniform operations across lattice:
C(x) = A(x)*B(x)

• Map grid onto virtual machine grid.

• API should hide subgrid layout and
subgrid faces communicated between
nodes.

• Implement API without writing a
compiler.

Data layout over processors

API Design Criteria

• Routines are extern C functions callable from C
and Fortran: extern functions <==> C++ methods.

• Overlapping of computation and communications.

• Hide data layout: Constructor, destructors. Query
routines to support limited number of deftypes.

• Support for multi-process or multi-threaded
computations hidden from user control.

• Functions do not (by default) make conversions of
arguments from one layout into another layout. An
error is generated if arguments are in incompatible.

II. Level 1 MP-API implementation
• Definition of MP interface (Edwards, Watson)

– Bindings for C, C++ and eventually Fortran.
– see doc http://www.jlab.org/~watson/lqcd/MessageAPI.html

• Implementation of MP-API over MPI subset (Edwards)

• Implementation of C++ MP-API for QCDOC (Jung)

• Myrinet optimization using GM (Jie Chen)

• Port of MILC code to level 1 MP-API (DeTar, Osborn)

Performance Considerations for Level 2

• Overlapping communications and
computations:

• C(x)=A(x)*shift(B,mu):
– The face of a subgrid is sent non-

blocking to a neighboring node, e.g. in
the forward direction.

– The neighboring node, in the backward
direction, sends its face into a pre-
allocated buffer.

– While this is going on, the operation is
performed on the interior sites.

– A “wait” is issued and the operation is
performed on the face.

Data layout over processors

Lazy Evaluation for Overlapping Comm/Comp

Consider the equation dest(x) = src1(x)*src2(x+nu) ; (for all x)

or decomposed as tmp(x) = src2(x+mu);
dest(x) = src1(x)*tmp(x)

Implementation 1: As two functions:

Shift(tmp, src2, mu,plus);
Multiply(dest, src1, tmp);

Implementation 2: Shift also return its result:

Multiply(dest, src1, Shift(src2, mu,plus));

Data Types
• Fields have various types (indices):

() () ()Color: Spin:, , ,i j i i jU x x Q xαβ α αβψΓ
• Index type (i.e the “fiber” over “base” lattice site)

• Gauge : Product(Matrix(Nc),Scalar)
• Dirac: Product(Vector(Nc),Vector(Ns))
• Scalars: Scalar
• Propagators: Product(Matrix(Nc),Matrix(Ns))?

• Support Red/Black sublattices & other subsets (Mask ?)

• Support compatible operations on types:

() ()* *ij iU x xαβ αψΓ Matrix(color)*Matrix(spin)*Vector(color,spin)

C Naming Convention for Level 2

• void QCDF_mult_T3T1T2_op3(Type3 *r, const Type1 *a,constType2*b)

•T3, T1, T2 are short for the type Type1, Type2 and Type3 :
LatticeGaugeF, LatticeDiracFermionF,
LatticeHalfFermionF, LatticePropagatorF

• op3 are options like

nnr r = a*b nnn r = -a*b
ncr r = a*conj(b) ncn r = -a*conj(b)
cnr r = conj(a)*b cnn r = -conj(a)*b
ccr r = conj(a)*conj(b) ccn r = -conj(a)*conj(b)
nna r = r + a*b nns r = r – a*b
nca r = r + a*conj(b) ncs r = r – a*conj(b)
cna r = r + conj(a)*b cna r = r – conj(a)*b
cca r = r + conj(a)*conj(b) ccs r = r - conj(a)*conj(b)

Data Parallel Interface for Level 2
Unary operations: operate on one source into a target

Lattice_Field Shift(Lattice_field source, enum sign, int direction);
void Copy(Lattice_Field dest, Lattice_Field source, enum option);
void Trace(double dest, Lattice_Field source, enum option);

Binary operations: operate on two sources into a target

void Multiply(Lattice_Field dest, Lattice_Field src1, Lattice_Field src2, enum option);
void Compare(Lattice_Bool dest, Lattice_Field src1, Lattice_Field src2, enum compare_func);

Broadcasts: broadcast throughout lattice
void Fill(Lattice_Field dest, float val);

Reductions: reduce through the lattice
void Sum(double dest, Lattice_Field source);

III. Linear Algebra: QCD Kernels

• First draft of Level 1 Linear Algebra API (DeTar,
Edwards, Pochinksy)

http://www.jlab.org/~edwards/qcdapi/LinAlg1API_0_1.htm

• Vertical slice for QCD API (Pochinsky)
– API conformant example of Dirac CG
– MILC implementation (Osborn)

• Optimize on Pentium 4 SSE & SSE2 code:
– for MILC (Holgrem, Simone, Gottlieb)
– for SZIN l (Edwards, McClendon)

http://www.jlab.org/~edwards/qcdapi/LinAlg1API_0_1.htm
http://www.jlab.org/~edwards/qcdapi/LinAlg1API_0_1.htm

Single Node

Performance in Megaflops for single-node Dirac operator,
1.7 GHz Pentium 4 Xeon

0

500

1000

1500

2000

2500

4^4 8*4^3 16*4^3 8^4
lattice size

Megaflops

32bit C
32bit SSE
64bit C
64bit SSE

IV. Application Porting & Optimization
• MILC: (revision version 6_15oct01)

– QCDOC ASIC simulation of MILC (Calin, Christan,
Toussaint, Gregory)

– Prefetching Strategies (Holgren, Simone, Gottlieb)

• SZIN: (new documentation and revision) (Edwards)
– Implementation on top of QDP++ (Edwards, Pochinsky)
– Goal: efficient code for P4 by Summer 2002

• CPS (Columbia Physics System)
– Software Testing environment running on QCDSP (Miller)
– Native OS & fabric for MP-API (Jung)

V. Data Archives and Data Grid
• File formats and header

– Build on successful example of NERSC QCD archive
– Extend to include lattice sets, propagators, etc.

• Consider XML for ascii headers
– Control I/O for data files
– Search user data using SQL to find locations.

• Lattice Portal
– Replicate data (multi-site), global tree structure.
– SQL-like data base for storing data and retrieving

• Web based computing
– batch system and uniform scripting tool.

VI. Performance and Exec. Environment

• Performance Analysis Tool:
– SvPABLO instrumentation of MILC (Celso)
– Extension through PAPI interface to P4 architecture

(Dongarra)

• FNAL Tools:
– Trace Tools extension to Pentium 4 and instrumentation

of MILC (Rechenmacher, Holmgen, Matsumura)
– FNAL “rgang” (parallel command dispatcher)
– FermiQCD (DiPierro)

• Cluster Tools: (Holmgren, Watson)
Building, operations, monitoring, BIOS update, etc

SvPablo Instrumentation of MILC

	SciDAC Software Infrastructure for Lattice Gauge Theory
	SciDAC Software Infrastructure Goals
	Lattice QCD – extremely uniform
	QCD-API Level Structure
	I. Design & Documentation of QCD-API
	Data Parallel paradigm on top of Message Passing
	API Design Criteria
	II. Level 1 MP-API implementation
	Performance Considerations for Level 2
	Lazy Evaluation for Overlapping Comm/Comp
	Data Types
	C Naming Convention for Level 2
	Data Parallel Interface for Level 2
	III. Linear Algebra: QCD Kernels
	Single Node
	IV. Application Porting & Optimization
	VI. Performance and Exec. Environment
	SvPablo Instrumentation of MILC

