Sound waves

Sound is a wave: 1. There is a disturbance. Disturbance in the air is _____ 2. Sound travels and propagates (spreads) outward 3. Sound experiences constructive and destructive interference Example: speaker speaker

Speed of sound:

T is temperature in Celcius

Usually, we take T = 20°C. What is the speed of sound at 20°C?

Amplitude, Energy, Power,	

Sound intensity: decibels

$$dB = 10\log \frac{I}{I_0}$$

 $I_0=1.0 \times 10^{-12} W/m^2$

 I_0 is the quietest sound that can be heard, the threshold of human hearing

In.terlace example: a high-quality loudspeaker advertises that it can produce frequencies from 30 Hz - 18000 Hz with a uniform (constant) sound level ±5dB. How much of a change in intensity is a difference of 5dB? "loudspeaker response"
2113

Example: volume increase

A single trumpet player can play at a volume of 130dB. How loud can two trumpet players play?

int.erlace example: Volume increase

If 20 monkeys typing on 20 typewriters have a volume of 94dB, how loud is one monkey typing on one typewriter?

2113

Example: airplane roar

The sound level measured 30m from a jet plane is 140dB. Estimate the sound level at 300 m.

Why does this happen?

The energy that is twice as far from the sun is spread over four times the area, making it one-fourth the intensity.

Int.erlace question: How do the different strings of a guitar or a violin make different notes if they are the same length?

"different notes"

$$f \lambda = v \Rightarrow f =$$

$$v = \sqrt{\frac{T}{\mu}} \Rightarrow v = \underline{\hspace{1cm}}$$

Two ways to adjust pitch (frequency):

- 1.Change _____
- 2. Change ____

Open tube instruments: motion pressure _0.8 --0.2 0.2 0.8 0.6 0.4 (even harmonics 0.6 are absent) www.phys.unsw.edu.awm.usic Rules: 1. A closed end of a tube (tied end of a string) must have a [node/antinode] because motion is [allowed/not allowed] 2. A open end of a tube (free end of a string) must have a

[node/antinode] because motion is ____[allowed/not allowed]

Beats: what happens when you add together two waves that have very close frequencies

https://www.youtube.com/watch?v=V8W4Djz6jnY

$$f_{\text{beat}} = f_2 - f_1$$

Doppler effect: https://www.youtube.com/watch?v=0mEF9v21Dh W

Explaining it - observer moves:

When you travel against the waves the frequency of the waves seems [higher/lower?]

What about when source moves?

When source moves away from you, space between waves (wavelength) appears ______(larger/smaller]

When source moves toward you, space between waves (wavelength) appears _____[larger/smaller]

Full formula

$$f' = \left(\frac{v \pm v_o}{v \pm v_s}\right) f$$

where

f' = the apparent frequency

f = the original frequency

v = speed of sound (or other wave)

v_o=speed of observer (use + if observer is moving [toward/away from] sound source, use - if observer is moving [toward/away from] sound source v_s=speed of source (use + if source is moving [toward/away from] observer, use - if observer is moving [toward/away from] observer

If an ambulance siren has a frequency of 2000hz

(a) What is the apparent frequency when the ambulance is moving $f' = \left(\frac{v \pm v_o}{v \pm v_s}\right) f$

towards the observer at 60kph

(b) What is the apparent frequency when the ambulance is moving away from the observer at 60kph?