Sound waves

Speed of sound:

 $(331+12)^{\frac{1}{5}}$ = $343\frac{4}{5}$

T is temperature in Celcius

Usually, we take T = 20°C. What is the speed of sound at 20°C?

Sound intensity: decibels

$$dB = 10\log \frac{I}{I_0}$$

 $I_0=1.0 \times 10^{-12} \text{W/m}^2$

Io is the quietest sound that can be heard, the threshold of human hearing

In.terlace example: a high-quality loudspeaker advertises that it can produce frequencies from 30 Hz - 18000 Hz with a uniform (constant) sound level ±5dB. How much of a change in intensity is a difference of 5dB?

 $|bg|_{b}^{2} = |bg|_{a} - |bg|_{b}^{2}$ $|bg|_{b}^{2} = |bg|_{a} - |bg|_{b}^{2}$ $|bg|_{a}^{2} = |bg|_{a}^{2} - |bg|_{b}^{2}$ $|bg|_{a}^{2} = |bg|_{a}^{2} + |bg|_{b}^{2}$ $|bg|_{a}^{2} = |bg|_{a}^{2} + |bg|_{b}^{2}$

$$= | \log b - | \log b |$$

$$= | \log a - | \log b - (\log c - | \log b)$$

$$= | \log a - | \log b - | \log c + | \log b |$$

$$= | \log a - | \log c - | \log 2$$

int.erlace example: Volume increase

If 20 monkeys typing on 20 typewriters have a volume of 94dB, how loud is one monkey typing on one typewriter?

2113

9413=10109 $\frac{1}{10}$ = $10\log \frac{1}{10}$ = $10\log \frac{1}{10}$ = $10\log \frac{1}{10}$ + $\log \frac{1}{10}$ = $10\log \frac{1}{10}$ =

Example: airplane roar

The sound level measured 30m from a jet plane is 140dB. Estimate the sound level at 300 m.

Stringed Instruments

Int.erlace question: How do the different strings of a guitar or a violin make different notes if they are the same length?

"different notes"

2113

 $f_{\mathcal{A}} = V = \int_{w}^{\pm} W$ $= \lim_{w \to \infty} \int_{w}^{\pm} W = \int_{w}^{\pm} \int_{w}^{\pm} W = \int_{w}^{\pm} \frac{1}{2} \int_{$

$$f \lambda = v \Rightarrow f = 2$$

$$f \lambda = v \Rightarrow f = \frac{1}{2}$$

$$v = \sqrt{\frac{T}{\mu}} \Rightarrow v = \frac{1}{2}$$

Two ways to adjust pitch (frequency): Two ways to aujus. I.

1.Change

Holy Congression

2. Change $\overline{\int}$

Beats: what happens when you add together two waves that have very close frequencies

https://www.youtube.com/watch?v=V8W4Djz6jnY

$$f_{\text{beat}} = f_2 - f_1$$

Doppler effect: https://www.youtube.com/watch?v=0mEF9v21Dh W

Explaining it - observer moves:

When you travel against the waves the frequency of the waves seems [higher/lower?]

$$f = \frac{1}{2} = \frac{1}{1 - 1} =$$

What about when source moves?

When source moves away from you, space between waves (wavelength) appears ______(larger/smaller]

When source moves toward you, space between waves (wavelength) appears _____[larger/smaller]

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1$$

Full formula

$$f' = \left(\frac{v \pm v_o}{v \pm v_s}\right) f$$

where

f' = the apparent frequency

f = the original frequency

v = speed of sound (or other wave)

v_o=speed of observer (use + if observer is moving [toward/away from] sound source, use - if observer is moving [toward/away from] sound source v_s=speed of source (use + if source is moving [toward/away from] observer, use - if observer is moving [toward/away from] observer

If an ambulance siren has a frequency of 2000hz

(a) What is the apparent frequency when the ambulance is moving

towards the observer at 60kph

towards the observer at 60kph
$$f' = \left(\frac{v \pm v_o}{v + v_s}\right) f$$

$$+ makes f' smaller$$

$$f_{best} = 162 f_2$$

ay from the observer at 60kph?

$$f' = \left(\frac{1}{1 + 1}\right) f = 1 \quad \text{for } f = 2$$

$$f = 1 \quad \text{for } f = 2$$

$$f = 1 \quad \text{for } f = 2$$