
spec™

X-Ray Diffraction Software

USER MANUAL and TUTORIALS

REFERENCE MANUAL

STANDARD MACROS GUIDE

FOUR-CIRCLE REFERENCE

ADMINISTRATOR’S GUIDE

HARDWARE REFERENCE

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

© 1989,1990,1992,1993,1994,1995,1996,1997,1998,1999,2000
by Certified Scientific Software. All rights reserved.

Portions derived from appendices to the Doctoral thesis of Alan Braslau,
Department of Physics, Harvard University, 1988.

This is version 2.8 of the spec documentation, printed August 16, 2001,
describing features of release 3.03 to 4.05 of the software.

spec and C-PLOT are trademarks of Certified Scientific Software.
All other trademarks and registered trademarks are the property of their respective
owners.

The material in this manual is furnished for informational use only, is subject to
change without notice and should not be construed as a commitment by Certified Sci-
entific Software. Certified Scientific Software assumes no responsibility or liability
for any errors or inaccuracies that may appear in this manual. The software de-
scribed in this manual is furnished under license and may only be used or copied in
accordance with the terms of such license.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

spec

X-Ray Diffraction Software

Certified Scientific Software
PO Box 390640 Cambridge, Massachusetts 02139 (617) 576-1610

FAX: (617) 497-4242 spec@certif.com

http://www.certif.com

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

MANUAL SUMMARY

USER MANUAL and TUTORIALS
A beginner ’s guide to diffractometer operation and a tutorial on the basic fea-
tures of the spec user interface.

REFERENCE MANUAL
An overview of the internal structure of spec and a complete description of all
the built-in keywords, operators, grammar rules, commands and functions.

STANDARD MACROS GUIDE
Tips on writing macros, examples of macros from the standard library and a
detailed description of the structure of the standard scan macros.

FOUR-CIRCLE REFERENCE
Describes the special functions, variables and macros used to operate the stan-
dard four-circle diffractometer. The various modes are described, along with
the use of sectors, cut points and frozen angles. Also contains an explanation
of how to fit the orientation matrix when the lattice parameters are unknown.

ADMINISTRATOR’S GUIDE
How to install and update the spec package. Explains the hardware configu-
ration and motor settings file and how to use security features to protect
motors from being moved by unqualified users.

HARDWARE REFERENCE
Information on the specific hardware devices and interfaces supported by
spec.

iv INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

TABLE OF CONTENTS

USER MANUAL AND TUTORIALS ... 1
Introduction ... 3
Beginner’s Guide to Diffractometer Operation 4

Star ting Up .. 4
Using the Printer and Data Files ... 6
Setting Motor Positions and Moving Motors 7
Counting ... 11
Scans ... 12

Introduction To the spec User Interface .. 14
spec as a Calculator ... 14
Command Recall (Histor y) .. 15
Controlling Output To the Printer and Data Files 17
Using Var ia bles ... 18
Flow Control ... 20
Macro Facility ... 22
Command Files .. 25
Status and Help .. 26
UNIX Commands ... 27
Moving Motors ... 28
Diffractometer Geometry ... 31
Counting ... 32
CAMAC, GPIB and Serial .. 34

Using spec with C-PLOT and Other UNIX Utilities 35
Standard Data File Format ... 35
Scans .4 .. 36
Contents ... 40
Showscans .. 41

REFERENCE MANUAL .. 43
Introduction ... 45
Inter nal Str ucture Of spec .. 45
Syntax Description ... 46

Comments .. 46
Identifier s ... 46

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION v

Arrays .. 47
Keywords ... 48
Numer ic Constants .. 49
Str ing Constants ... 49
Str ing Patter ns and Wild Cards ... 50
Command Recall (Histor y) .. 50
Star ting Up .. 51
Keyboard Interr upts ... 54
Cleanup Macros .. 54
Exiting .. 55
Variables ... 55
Operator s ... 59
Flow Control ... 62
Grammar Rules .. 64

Built-In Functions and Commands .. 68
Utility Functions and Commands ... 69
Input and Output ... 81
Commands For Var ia bles ... 89
Commands For Macros .. 90
Hardware Functions and Commands ... 94
Data Handling and Analysis Functions .. 106
Str ing and Number Functions ... 118

STANDARD MACRO GUIDE .. 121
Introduction ... 123
Some Tips ... 124
Utility Macros .. 127

UNIX Commands ... 127
Basic Aliases ... 127
Basic Utility Macros .. 128
Reading From Command Files ... 130
Saving To Output Devices ... 132

Star t-up Macros ... 133
Motor Macros .. 135
Counting Macros .. 140
Plotting Macros .. 142

vi INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Reciprocal Space Macros ... 143
Scan Macros .. 145

Scan Miscellany ... 145
Motor Scans ... 146
Basic Reciprocal Space Scans ... 147
Special Reciprocal Space Scans ... 147
Temperature Scans .. 148
Po wder Mode .. 148
Customizing Scan Output ... 148

Temperature Control Macros ... 149
Pr inter Initialization Macros ... 153
The Scan Macros In Detail .. 154
Standard Data-File Format .. 162

FOUR-CIRCLE REFERENCE ... 163
Introduction ... 165
Diffractometer Alignment .. 166
Or ientation Matr ix ... 168
Four-Circle Modes ... 169
Freezing Angles ... 172
Sector s .. 173
Cut Points ... 174
Four-Circle Files .. 175
Four-Circle Var ia bles ... 175
Four-Circle Functions ... 177
Four-Circle Macros .. 178
Zone Macros .. 179
Least-Squares Refinement of Lattice Parameter s 180

ADMINISTRATOR’S GUIDE .. 185
Introduction ... 187
Quick Install .. 187
Steps For Installing spec .. 187

Extracting the Distribution ... 188
Installing the spec Program Files .. 189
Installing Driver s .. 193

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION vii

Selecting the Hardware Configuration 194
Fine Tuning the Hardware Configuration 195
Adding Site-Dependent Help Files ... 195
Adding Site-Dependent C Code ... 195

Updating spec ... 197
Installed Files .. 198

File Hierarchy .. 198
The CAMAC Debugging Program ... 199
Ena bling I/O Por ts On PC Platfor ms (not linux) 200
Ena bling I/O Por ts On PC Platfor ms Running linux 200
Ena bling E/ISA I/O Por ts On HP 700 Systems 201
The Configuration Editor ... 202
The Settings File .. 203
The Config File .. 203

Secur ity Issues .. 210
Extra Protection .. 210

HARDWARE REFERENCE .. 213
Introduction ... 215
Interface Controller s and General Input/Output 215

CAMAC Controller s ... 216
GPIB Controller s ... 219
VME Controller s .. 226
Ser ial (RS-232C) Por ts ... 227
Generalized CAMAC I/O .. 227
PC Por t Input/Output .. 228

Motor Controller s ... 229
Timer s and Counters ... 251
Multichannel Data Acquisition Devices ... 260

REFERENCES ... 267

INDEX ... 268

MANUAL PAGE .. 279

viii INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Preface For the Interim Manual

We apologize for the work-in-progress nature of this manual. We hope to have a com-
pletely up-to-date version someday in either this or the next century. Until then, we
hope this version will be of some use.

Presently, the Reference Manual and Administrator ’s Guide included in this interim
manual are more or less current with respect to release 4 of spec. Also, portions of
the Four-Circle Reference have been recently rewritten. In addition, a new Hardware
Reference has been started. However, the User Manual and Tutorials could use a
major rewrite, and the Standard Macros Guide does not reflect many revisions to the
standard macros.

At any rate, this version of the manual should certainly give you the flavor of spec.
For details on exactly how macros are constructed, you should probably consult the
source code for the macros in your current distribution. The most recent on-line
changes help files should be perused for the most up-to-date information on new fea-
tures.

Also, please note that our World Wide Web site at http://www.certif.com contains
both online and downloadable PostScript copies of this manual, and will surely be
updated with more interim versions, before the next official version is available.

Finally, if there are questions or ambiguities that cannot otherwise be resolved, by all
means contact us at CSS for the final word.

Thanks for your patience.

G.S. 6/13/99

Preface For the Interim Manual ix

x Preface For the Interim Manual

USER MANUAL AND TUTORIALS

2 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Introduction
spec is a UNIX-based software package for instrument control and data acquisition
widely used for X-ray diffraction at synchrotrons around the world and in university,
national and industrial laboratories. Developed in 1986 for X-ray diffraction experi-
ments, spec’s portability, flexibility and power are winning it increasing application
as general-purpose data-acquisition software. spec is available on a wide range of
UNIX platforms and supports numerous hardware configurations. Features include:

• Built-in code to regulate motor controllers and detection electronics using VME,
CAMAC, GPIB, RS-232, PC-board and ethernet-socket interfaces.

• Generalized access for VME, CAMAC, GPIB, RS-232, PC I/O ports and socket I/O
to read from and write to user devices.

• Sophisticated user interface with command interpreter, complete with variables,
looping and flow control, allowing for creative experiment automation.

• Language uses a familiar C-like syntax.

• A command-file facility allows complicated or commonly used command sequences
to be immediately called up.

• An easy-to-use macro facility, with a large library of predefined macros. Macros
can be readily modified with any text editor to suit experiments.

• Scans, data-file formats, etc. are not built into the compiled program but defined
as easily modified macros.

• High-resolution, real-time data plots are available on X Windows and Sunview
systems.

• Macro libraries and geometry-calculation routines support two-, four-, five- and
six-circle diffractometers, kappa diffractometers, many liquid surface X-ray
diffractometers and other configurations. The standard four-circle diffractometer
supports many advanced modes and includes features such as least-squares
refinement of the lattice parameters. New geometry configurations can be easily
created.

• Hardware configuration employs a spread-sheet-style interface to select device
names, addresses, CAMAC slot assignments, motor parameters, etc.

• Security features let site administrators restrict access to particular motors (such
as those at a synchrotron beam-line front end).

• Available for most UNIX Systems, widely used on Linux PC platforms and UNIX
workstations, including SUN (both SunOS 4.x and Solaris 2.x), HP 700 series and
IBM RS/6000.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 3

Beg inner’s Guide to Diffractometer Operation
Star ting Up

In this introduction to the basics of spec, as in most of this manual, the standard
four-circle diffractometer configuration is used in the examples. Other specialized
diffractometer geometries are available, but all configurations function in a similar
manner.

To start up the four-circle version of the spec package from a UNIX shell, type:
% fourc

(In this manual, input from the keyboard will be indicated in bold-faced type.) You
will see output similar to the following:

Welcome to ‘fourc’ Release 3.01.01
Copyright (c) 1987,1988,1989,1990,1991,1992,1993,1994,1995
by Certified Scientific Software. All rights reserved.

(Portions derived from a program developed at Harvard University.)

Using ‘/usr/local/lib/spec.d/’ for auxiliary file directory (SPECD).

Getting configuration parameters from ‘SPECD/fourc/config’.
Using ‘/dev/ca00’ for CAMAC device.
Using National Instruments GPIB.
Using 8 motors.

=
Spec Hot Line: (617) 576-1610.
Type "h changes" for info on latest changes.
See spec manual for tutorials.
=

Opening "SPECD/standard.mac" at input nest level 1.
Warning: No open data file. Using "/dev/null".
Type "startup" to initialize data file, etc.

Opening "SPECD/four.mac" at input nest level 1.
Warning: Using default lattice constants.
(UB recalculated from orientation reflections and lattice.)

1.FOURC>

The welcome message identifies the geometry configuration (fourc) and the release
number of the program (3.01.01). The directory name that contains spec’s auxiliary

4 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

files is then identified (/usr/local/lib/spec.d). That name is assigned to spec’s
interval variable named SPECD .

A configuration file is then read to obtain the hardware configuration (hardware
devices and types, stepper motor parameters, etc.). Various messages are printed as
the specific hardware devices are initialized. The number of motors described in the
configuration file is reported. During the start-up hardware configuration, spec
reads the current diffractometer angle settings from the motor-controller hardware
registers and verifies that they agree with the positions stored in a settings file asso-
ciated with the diffractometer. If there is a discrepancy, you will see output similar to
the following:

E500 at 0 steps (.1 user), spec at 24431 steps (12.3155 user)
on motor 1, slot 6, "Theta". Modify the E500 registers?

The E500 is one of many different motor controllers available. Since the controller
shows 0 steps, it probably has been powered down, and the program value is probably
correct. Type yes or y to modify the controller registers. If you are uncertain what to
do, the safest thing is to immediately terminate the program without updating the
motor settings files by typing the quit control character (usually a ˆV on IBM AIX
platforms and a ˆ\ on most others), and then seek help.

A news file is displayed each time the program starts up. In this example, the
Spec Hot Line message is from that file. The spec administrator can keep the news
file up-to-date with messages for local users.

The first time you run spec, standard command files from the auxiliary file directory
are automatically read (SPECD/four.mac and SPECD/standard.mac). These files con-
tain the standard macro definitions used to operate the diffractometer. There are
also some commands that assign default values to the variables used in the macros.
The displayed warning message about no data file being open is produced by these
standard macros, along with the message that suggests running the startup macro.

Finally, you are prompted for input. The prompt indicates the geometry configura-
tion and includes a prepended command sequence number that is used with the com-
mand recall (or history) feature. You can exit the program by typing a ˆD (control-D)
at the prompt:

1.FOURC> ˆD
Bill’s state is stored for /dev/console.

%

The closing message confirms that your spec state is saved. The spec state consists
of all your current macro definitions, variables, open output files and command his-
tory. Each user has a unique state associated with a particular terminal. Your saved
state is automatically restored the next time you run spec from the same terminal.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 5

(See page 52 in the Reference Manual to see how to start spec with a state from
another user or terminal.)

spec is built around an interpreter that has a C-like syntax and recognizes over a
hundred built-in commands and function names. However, you will typically be
invoking the standard macros. These macros are written to do specific jobs using the
built-in commands and functions and require minimum keyboard input. If you just
want to move motors, count photons and do scans, you will only have to learn the few
standard macros presented in this Beginner ’s Guide.

Using the Printer and Data Files

The standard macros in spec are designed to keep records of the experiment in
progress on a printer and in a data file, although neither is required. The startup
macro will prompt for a printer and a data file, along with asking for many other
parameters and options. For now, enter information just for the printer and data file
and accept the current values for the other parameters.

1.FOURC> startup

Enter <return> for no change in the displayed parameters.
The names of start-up macros that can be invoked separately
are shown in parenthesis above a set of queries.
Type ˆC to return to command level without finishing.
(Interrupting one of the specialized start-up macros will
likely undo any changes entered for its associated parameters.)

(newsample)
Title for scan headers (fourc)? cu 110

(newfile)
Data file (/dev/null)? cu110/94_01_31.a
Using "cu110/94_01_31.a". Next scan is number 1.
Last scan # (0)? <return>

Use a printer for scan output (NO)? y
Printer device (/dev/null)? /dev/lp

(And so on ...)

2.FOURC>

When prompting for input, spec generally displays the default or current response in
parentheses. Simply hitting <return> makes that selection.

You can use the newfile macro directly to open (or reopen) a data file. Usage is
newfile [filename [scan_number]] . (As is the convention in this manual, the
square brackets indicate optional arguments, and the Courier Oblique typeface

6 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

denotes variable parameters you supply.) The optional argument scan_number is the
number of the last scan and should be specified when appending to an existing data
file.

The standard spec macros allow you to use a printer to record scan data and other
status information. Not all users use a printer, though, as the information is also
stored in data files.

When using a printer, spec generates output for a 132-column wide format. Most
spec users use 81⁄2" wide paper with their printer set to compressed mode. The
initfx macro sends the correct programming sequence to put an Epson printer into
compressed mode. The initdw macro does the same for a Decwriter. (Other macros
are available for other printers − type lsdef init* from spec for a list.) You could
also use printer switches to select compressed mode.

Also, when using the printer, you should set the top-of-form position correctly. That
way, each scan will begin at the top of a new page, and it will be much easier to locate
scans when thumbing through the data printout later.

Use the comment macro (also available as com) to insert arbitrary comments in the
data file and on the printer. For example,

2.FOURC> com Absorber inserted in front of detector

Mon Feb 15 01:41:52 1994. Absorber inserted in front of detector.

3.FOURC>

Setting Motor Positions and Moving Motors

When spec is used to control an X-ray diffractometer, the wh (where) macro is avail-
able to show the positions of the most interesting angles and the diffractometer posi-
tion in reciprocal space coordinates. With the four-circle diffractometer, the output is
as follows:

3.FOURC> wh

H K L = 0 0 1
Alpha = 30 Beta = 30 Azimuth = 90
Omega = 0 Lambda = 1.54

Two Theta Theta Chi Phi
60.0000 30.0000 -90.0000 0.0000

4.FOURC>

The incident and scattered angles for surface diffraction (ALPHA and BETA), the

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 7

AZIMUTH angle used in advanced modes (see the Four-Circle Reference) and the inci-
dent X-ray wavelength, LAMBDA , are also listed.

The angular positions listed above are the user angles. You set user angles during
diffractometer alignment to satisfy the premises of the geometry calculations, such as
the positions of the zeroes of the angles. Dial angles keep track of hardware limits
and prevent complete loss of angles from alignment errors or computer failure. The
dial angles are generally made to agree with a physical indicator on each motor, such
as a dial. User angles are related to the dial angles through the equation:

user = sign × dial + offset

Redefining a user angle changes the internal value of offset. Dial angles are directly
proportional to the values contained in the hardware controller registers. The sign of
motion is set in the configuration file by the spec administrator and normally isn’t
changed.

The set_dial motor position macro is used to set the dial position of a motor. The
argument motor is the motor number or mnemonic. All motors have short mnemon-
ics, such as tth , th , chi , and phi .

4.FOURC> set_dial tth 24.526

Mon Feb 15 01:42:10 1994. Two Theta dial reset from 0 to 24.526.

5.FOURC>

The set motor position macro is used to set the user position of a motor (i.e., to
change offset). If you had a slit motor with mnemonic ts1 , you might enter

5.FOURC> set ts1 .5

Mon Feb 15 01:43:31 1994. Top Slit1 reset from 0 to .5.

6.FOURC>

The wa (where all) macro lists both the user and dial positions of all configured
motors.

6.FOURC> wa

Current Positions (user, dial)
Two Theta Theta Chi Phi Top Slit1 Bot Slit1

tth th chi phi ts1 bs1
24.6310 12.3155 90.0000 0.0000 0.5000 -0.5000
24.5260 12.2155 89.7865 0.0950 0.5000 -0.5000

7.FOURC>

8 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

spec also keeps track of software motor limits. These limits are always checked
before any motors are moved. The lm macro lists these limits in both user and dial
angles, as well as the current positions of the motors.

7.FOURC> lm

USER Limits (high, current, low):
Two Theta Theta Chi Phi Top Slit1 Bot Slit1
180.1050 90.1000 135.2135 179.9050 5.0000 0.0000
24.6310 12.3155 90.0000 0.0000 0.5000 -0.5000

-179.8950 -89.9000 -134.7865 -180.0950 0.0000 -5.0000

DIAL Limits (high, current, low):
Two Theta Theta Chi Phi Top Slit1 Bot Slit1
180.0000 90.0000 135.0000 180.0000 5.0000 0.0000
24.5260 12.2155 89.7865 0.0950 0.5000 -0.5000

-180.0000 -90.0000 -135.0000 -180.0000 0.0000 -5.0000

8.FOURC>

The macro set_lm motor low high changes the software limits for a single motor.
The values for low and high are given in user angles (although they are stored inter-
nally in dial angles).

The wm motor [motor ...] macro lists complete information for up to six motors
given as arguments.

8.FOURC> wm tth th

Two Theta Theta
tth th

User
High 180.1050 90.1000
Current 24.6310 12.3155
Low -179.8950 -89.9000
Dial
High 180.0000 90.0000
Current 24.5260 12.2155
Low -180.0000 -90.0000

9.FOURC>

Once the diffractometer has been aligned, you can move to any allowed reciprocal
space position using the br H K L (Bragg) macro.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 9

9.FOURC> br 2 0 0

10.FOURC> wh

H = 2 K = 0 L = 0
ALPHA = -25.251 BETA = 25.251 AZIMUTH = 90 LAMBDA = 1.54

Two Theta Theta Chi Phi
50.5030 25.2515 90.0000 0.0000

11.FOURC>

You can see where the motors would move for particular values of (H, K, L) using the
ca H K L (calculate) macro.

11.FOURC> ca 2 1 1

Calculated Positions:

H = 2 K = 1 L = 1
ALPHA = -25.252 BETA = 25.252 AZIMUTH = -90 LAMBDA = 1.54

Two Theta Theta Chi Phi
62.9960 31.4980 54.7355 135.0000

12.FOURC>

Conversely, spec will display the (H, K, L) that corresponds to a particular set of
motor positions using the ci tth th chi phi (calculate inverse) macro.

A single motor may be moved in real space using the mv motor position macro. For
example,

12.FOURC> mv tth 50

13.FOURC>

will move the 2θ motor to 50°. You are prompted for more input immediately, even
though the motors are still moving.

You can tell when the motor has stopped moving by using the w macro. The program
will pause until the motor has stopped moving and then generate a beep on the ter-
minal. Alternatively, you can have the motor position displayed on the screen as it is
moving by invoking the umv (updated-move) macro instead of mv . To stop the motors
before they have finished moving, type the interrupt character, usually a ˆC .

You can use the mvr motor relative_position macro to move a motor relative to
its current position.

10 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

13.FOURC> mvr th 1

14.FOURC>

will move θ by one degree.

The tw motor delta (tweak) macro is useful when lining up the diffractometer or
when searching for the beam.

14.FOURC> tw th .1
Indicate direction with + (or p) or - (or n) or enter
new step size. Type something else (or ˆC) to quit.

th = 26.2515, which way (+)? <return>
th = 26.3515, which way (+)? <return>
th = 26.4515, which way (+)? <return>
th = 26.5515, which way (+)? <return>
th = 26.6515, which way (+)? -
th = 26.5515, which way (-)? <return>
th = 26.4515, which way (-)? ˆC

15.FOURC>

Each time you hit <return> , the motor moves delta in the plus or minus direction.

Counting

You count photons using the ct macro. Without arguments, this macro counts for the
time set by the variable COUNT , which is typically one second. According to the con-
vention used in the standard macros, positive count times indicate counting to sec-
onds and negative count times indicate counting to monitor counts.

15.FOURC> ct 10

Mon Feb 15 01:45:12 1994

Seconds = 10
Monitor = 389387 (38939/s)
Detector = 192041 (19204/s)

16.FOURC> ct -40000

Mon Feb 15 01:45:28 1994

Seconds = 1.027
Monitor = 40000 (38948/s)
Detector = 19756 (19237/s)

17.FOURC>

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 11

Type a ˆC to abort counting. The macro show_cnts will display the current scaler
contents. The uct macro will update the screen with the current scaler contents dur-
ing the counting period.

Scans

Scans in spec are built of macros. Many different standard scans are available.
Absolute-position motor scans such as ascan , a2scan and a3scan move one, two or
three motors at a time. Relative-position motor scans are lup (or dscan), d2scan and
d3scan . The relative-position scans all return the motors to their starting positions
after the last point. Two motors can be scanned over a grid of points using the mesh
scan.

Simple reciprocal space scans are hscan , kscan and lscan . The hklscan macro
moves the diffractometer along an arbitrary straight line in reciprocal space. Scans
such as hkcircle or hkradial describe other trajectories. The hklmesh scan mea-
sures intensities over a grid of reciprocal-space points.

If you do not know the arguments for a scan or how a scan is used, you can call up its
usage by typing its name with no arguments.

17.FOURC> ascan
Usage: ascan motor start finish intervals time

18.FOURC> hscan
Usage: hscan start finish intervals time

19.FOURC>

When the program does a scan such as hscan , the following happens: the program
waits for motors to stop moving, calculates (H, K, L) for the current position and then
scans H, holding K and L fixed for a reciprocal space scan along the H direction.

19.FOURC> hscan .9 1.1 20 1
Mon Feb 15 01:50:33 1994

Scan 1 Mon Feb 15 01:50:33 1994 file = cu110/90_01_31.a
hklscan 0.9 1.1 0 0 0 0 20 1
H K L Detector Monitor Seconds
0 0.9 0 0 2604 38939 1
1 0.91 0 0 3822 38820 1
2 0.92 0 0 5295 39034 1
3 0.93 0 0 7259 38789 1
4 0.94 0 0 9298 38804 1
5 0.95 0 0 11505 38909 1
6 0.96 0 0 13907 38821 1
7 0.97 0 0 16022 39110 1

12 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

8 0.98 0 0 17603 38839 1
9 0.99 0 0 18834 38950 1
10 1 0 0 19103 38917 1
11 1.01 0 0 18701 39013 1
12 1.02 0 0 17652 39135 1
13 1.03 0 0 16011 38836 1
14 1.04 0 0 13848 38901 1
15 1.05 0 0 11585 38933 1
16 1.06 0 0 9302 39022 1
17 1.07 0 0 7237 39205 1
18 1.08 0 0 5324 38957 1
19 1.09 0 0 3780 38801 1
20 1.1 0 0 2580 38975 1

Peak at 1 is 19103 FWHM at 1 is 0.05 COM is 1
Sum = 231272 Ave.Mon./Time = 38921 Ave.Temp. = 0C
28 second

20.FOURC>

The output shown is what would generally appear on the screen. More detailed out-
put is sent to the printer. Also, a complete scan header and the data points are
stored in the data file. A rudimentary plot can be produced on the printer at the end
of the scan. Typing splot will produce a plot of the data on the screen. Typing pts
will list the data on the screen.

The setplot macro configures how the data will be displayed during and at the con-
clusion of scans.

20.FOURC> setplot

Do real-time screen plots during scans (NO)? y
Do screen plot after scan (YES)? <return>
Do printer plot after scan (NO)? y

21.FOURC>

Scans can be aborted by typing ˆC . Typing scan_on restarts an aborted scan at the
current point.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 13

Introduction To the spec User Interface
spec as a Calculator

In some respects, the spec user interface behaves like a BASIC language interpreter
that uses the C language syntax. For example, you can easily print strings and the
results of arithmetic expressions:

1.FOURC> p 2+2, sqrt(3), "2ˆ16 =", 1<<16
4 1.73205 2ˆ16 = 65536

2.FOURC>

(The p macro is defined as print , a built-in command.) You do not need to search for
your calculator, as all the standard operators and functions are available.

The arithmetic operators (= , ∗ , / , % , + , − , ++ , −− , += , −= , ∗= , /= , %=), the relational
operators (> , < , <= , >= , == , !=), the boolean operators (! , && , ||), the bitwise opera-
tors (>> , << , ˜ , & , ˆ , | , >>= , <<= , &= , ˆ= , |=) and the ternary operator (?:) are all
available. Parentheses can be used for grouping within expressions. See the Refer-
ence Manual for a description of all the operators and their rules of precedence.

The most useful standard C math functions are included, such as sin() , cos() ,
tan() , asin() , acos() , atan() , exp() , log() , log10() , pow() , sqrt() , and
fabs() . Conversions functions such as deg() and rad() convert between degrees
and radians, while bcd() and dcb() convert between decimal and binary-coded deci-
mal. A rand() function to return random numbers is also provided.

Numbers can be entered in decimal, octal or hexadecimal notation, just as in C.
2.FOURC> p 100, 0100, 0x100
100 64 256

3.FOURC>

Special string functions also exist. The date() function provides the current date
and time as a string:

3.FOURC> p date()
Mon Feb 15 02:13:13 1994

4.FOURC>

The date() function can also take an argument that is the number of seconds from
the UNIX epoch.

14 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

4.FOURC> p date(1e9)
Sat Sep 8 21:46:40 2001

5.FOURC> p date(0)
Wed Dec 31 19:00:00 1969

6.FOURC> p int(time()), date(time())
729760917 Mon Feb 15 02:21:57 1994

7.FOURC>

The second example shows the (Eastern Standard Time) moment of the UNIX epoch.
The function time() returns the number of seconds since that moment, including a
fractional part with a resolution determined by the system clock. The difference of
subsequent calls to time() can, for example, give a reasonable elapsed time for each
point in a scan.

The function input() reads a string from the keyboard. An optional argument will
be printed first. For example, a macro or command file might prompt you for infor-
mation:

7.FOURC> TITLE = input("Please enter a title: ")
Please enter a title: Au (001) Sample #1

8.FOURC>

Other string functions such as index() , substr() , length(s) and
sprintf(format, [args]) are also available. See the Reference Manual for details.

Command Recall (Histor y)

A command recall (or history) feature lets you recall previously typed commands.
spec’s command recall implements a subset of the features of the standard csh his-
tory mechanism. When using command recall, note that only keyboard input is
saved, command recall cannot be used in command files, and the command recall
characters must occur at the beginning of a new line.

When you run spec interactively, a command sequence number is always prepended
to the prompt. The history command lists by number the commands that can be
recalled. (At present, only the most recent 1000 commands are available for recall.)

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 15

8.FOURC> history
1 p 2+2, sqrt(3), "2ˆ16 =", 1<<16
2 p 100, 0100, 0x100
3 p date()
4 p date(1e9)
5 p date(0)
6 p time(), date(time())
7 TITLE = input("Please enter a title: ")
8 history

9.FOURC>

To use command recall, type !! or !-1 to recall the previous command. Typing !-2
will recall the second previous command. Type !2 to recall command number 2.
Also, !TI will recall the last command beginning with the string TI .

9.FOURC> !2
p 100, 0100, 0x100
100 64 256

10.FOURC>

Notice that the recalled command is first printed and then executed.

Recalled commands can be modified by appending text.
10.FOURC> !p , "= 100, 0100 and 0x100."
p 100, 0100, 0x100 "= 100, 0100 and 0x100."
100 64 256 = 100, 0100 and 0x100.

11.FOURC>

Arbitrary substitutions to recalled commands are allowed using the :s/left/right/
modifier, as in

11.FOURC> !-1:s/./,respectively./
p 100, 0100, 0x100 "= 100, 0100 and 0x100, respectively."
100 64 256 = 100, 0100 and 0x100, respectively.

12.FOURC>

You can also use a circumflex ˆ to make a substitution on the most recent command,
just as with the standard UNIX csh.

12.FOURC> ˆ=ˆareˆ
p 100, 0100, 0x100 "are 100, 0100 and 0x100, respectively."
100 64 256 are 100, 0100 and 0x100, respectively.

13.FOURC>

16 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Controlling Output To the Printer and Data Files

spec’s output facility is unusual. Output files and devices, including the screen, are
turned on or off for output. The output of each printing command, whether gener-
ated by a user command or internally, is sent to all the turned-on devices.

open("filename") opens a file or device to append output. The current contents of
existing files are never erased. The on("filename") function turns on printing to
the file or device and opens the file if open() was not previously called. The
off("filename") function ends printing to that file or device, and close("file-
name") closes the file or device and removes the name from the program’s table of file
pointers. The name "tty" is special when used as an argument to these functions.
It always refers to your current terminal.

Whenever there is an error or a ˆC interrupt, all files (except log files) are turned off,
and output to the terminal is turned on. A log file is used for debugging purposes and
is any file that begins with log . Output to all on files and devices is automatically
copied to a log file.

To get the status of all open files, type:
13.FOURC> on()
‘tty’ has output ON.
‘/usr/alan/default.dat’ has output OFF.
‘/dev/null’ has output OFF.

14.FOURC>

If you change spec’s current directory, you can reference open files either by the
name with which the files were opened or by the correct path name relative to the
new directory.

The standard macros use three output devices: the screen, a printer and a data file.
The ont , offt , onp , offp , ond and offd macros are usually used to simplify control-
ling output to these devices, where ont is defined as on("tty") , etc. Typical usage is

ond; offt; printf("#S %d\n", ++SCAN_N); offd; ont

Often, printing commands are placed between onp and offp to direct the output both
to the screen and the printer. For instance,

1.FOURC> onp; p "This is also being printed on the printer."; offp
This is also being printed on the printer.

2.FOURC>

Formatted printing is available using the printf() and fprintf() functions. The

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 17

format specifications are the same as for the C-language routine and can be found in
the printf() write-up in any C reference manual.

2.FOURC> printf("The square root of two is %.12g.\n", sqrt(2))
The square root of two is 1.41421356237.

3.FOURC>

Using Var ia bles

spec’s variables can be used as both strings and as double-precision floating-point
numbers. Variables are not declared, but come into existence through usage. Some
variables are built-in, though, and of these, some have preassigned values. The vari-
able PI is an example.

3.FOURC> {
4.more> k = 2 * PI / 1.54
5.more> print k
6.more> }
4.07999

7.FOURC>

Curly brackets ({ and }) are used to delimit a block to be interpreted together, since
variables are local to interpreted blocks. Notice that the prompt indicates the pro-
gram is expecting further input before interpreting and taking action.

7.FOURC> print k
0

8.FOURC>

The value of k disappeared because k was local to the previous statement block. New
variables start off with a value of zero.

A variable may be declared global to hold its value outside an interpreted block:
8.FOURC> global Lambda CuKa

9.FOURC> Lambda = 1.54

10.FOURC> CuKa = "Copper K-alpha"

11.FOURC> print CuKa, "=", Lambda
Copper K-alpha = 1.54

12.FOURC>

18 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

By convention, global variables in the standard macro package use capital letters or
begin with an underscore. Variables can be made constant to protect them from
accidental reassignment,

12.FOURC> constant Lambda 1.54

13.FOURC> Lambda = 1.7
Trying to assign to a constant ‘Lambda’.

14.FOURC>

Variables defined as constant are automatically global.

Most built-in variables with preassigned values are of the immutable type and cannot
be changed at all:

14.FOURC> PI = 1
Trying to assign to an immutable ‘PI’.

15.FOURC>

Some built-in variables, such as DEBUG , can be changed by the user. Another vari-
able, the A[] array, may be filled by the program with the current motor positions or
can be set to target motor positions. For a list of all current symbols, type:

15.FOURC> syms
(Built-In/Global/Local Array Number String Constant/Immutable)

8256 A (BA...) 80 SLIT_W (G.NS.) 80 _f1 (G.NS.)

96 ADMIN (G..S.) 96 SPEC (B..SI) 80 _f2 (G.NS.)

80 BG (G.N..) 112 SPECD (B..SI) 80 _f3 (G.NS.)

96 COLS (B.N..) 80 TEMP_CS (G.NS.) 80 _fx (G.NS.)

80 COUNT (G.N..) 80 TEMP_SP (G.NS.) 80 _g1 (G.NS.)

96 COUNTERS (B.N.I) 96 TERAMP_MIN (G.N..) 80 _g2 (G.NS.)

96 COUNT_TIME (G.NS.) 96 TERM (B..S.) 96 _hkl_col (G.N.C)

128 CP_FILTER (G..S.) 80 TIME (G.NS.) 80 _m (G.NS.)

112 CWD (B..SI) 96 TIME_END (G.NS.) 80 _m1 (G.NS.)

128 DATAFILE (G..S.) 96 TITLE (G..S.) 80 _m2 (G.NS.)

112 DATA_DIR (G..S.) 80 T_AV (G.NS.) 80 _m3 (G.NS.)

80 DATE (G.NS.) 80 T_HI_SP (G.N..) 80 _n1 (G.NS.)

80 DEBUG (B.N..) 80 T_L (G.NS.) 80 _n2 (G.NS.)

80 DEGC (G.NS.) 80 T_LO_SP (G.N..) 80 _nm (G.NS.)

80 DEGC_SP (G.NS.) 2736 U (BA...) 80 _numgeo (G.N..)

80 DET (G.N..) 1056 UB (BA...) 80 _pmot (G.NS.)

80 DOFILE (G.NS.) 592 UNITS (GA...) 96 _pmotflag (G.NS.)

96 DO_DIR (G..S.) 80 UPDATE (G.N..) 96 _pre_chk (G.N..)

80 EPOCH (G.N.C) 96 USER (B..SI) 80 _pwid (G.NS.)

80 FPRNT (G.NS.) 96 USER_CHK_ACQ (G.NS.) 80 _reg_f (G.NS.)

1296 G (BA...) 96 USER_CHK_COUNT (G.NS.) 80 _reg_i (G.NS.)

96 GS_file (G..S.) 96 USER_CHK_MOVE (G.NS.) 80 _reg_n (G.NS.)

80 GS_scan (G.N..) 80 VFMT (G.NS.) 80 _reg_s (G.NS.)

80 GS_xcol (G.N..) 80 VPRNT (G.NS.) 112 _reg_scan (G..S.)

80 GS_ycol (G.N..) 80 X_L (G.NS.) 80 _reg_t (G.NS.)

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 19

96 GTERM (B..S.) 80 Y_L (G.NS.) 80 _s (G.NS.)

80 HEADING (G.NS.) 816 Z (BA...) 80 _s1 (G.NS.)

112 HOME (B..SI) 80 _1 (G.N..) 80 _s2 (G.NS.)

96 MAIL (G..S.) 80 _2 (G.NS.) 80 _s3 (G.NS.)

80 MODES (G.N.C) 80 _3 (G.NS.) 80 _sleep (G.NS.)

80 MON (G.N..) 80 _4 (G.NS.) 80 _stime (G.NS.)

96 MON_RATE (G.NS.) 80 _5 (G.NS.) 80 _stype (G.NS.)

80 MOTORS (B.N.I) 80 _6 (G.NS.) 80 _sx (G.NS.)

80 MT_AV (G.NS.) 80 _7 (G.NS.) 96 _upd_flg (G.NS.)

80 NPTS (G.NS.) 80 _8 (G.NS.) 80 bg_m (G.NS.)

80 PFMT (G.NS.) 80 _9 (G.NS.) 80 bg_pts (G.N..)

80 PI (B.N.I) 80 _LAMBDA (G.NS.) 80 bg_yI (G.NS.)

96 PLOT_MODE (G.N..) 96 _bad_lim (G.NS.) 80 chi (B.N.I)

80 PL_G (G.N..) 80 _c1 (G.NS.) 96 chk_thresh (G.NS.)

80 PL_G1 (G.N..) 80 _c2 (G.NS.) 80 det (B.N.I)

80 PL_X (G.N..) 80 _c3 (G.NS.) 1184 gmodes (GA...)

80 PL_Y (G.N..) 80 _c4 (G.NS.) 656 mA (GA...)

80 PPRNT (G.NS.) 80 _cols (G.NS.) 80 mon (B.N.I)

112 PRINTER (G..S.) 80 _const (G.NS.) 80 phi (B.N.I)

1856 Q (BA...) 80 _cp (G.NS.) 128 rplot_col (G..S.)

80 REFLEX (G.NS.) 80 _ctime (G.NS.) 80 sec (B.N.I)

80 ROWS (B.N..) 80 _d (G.NS.) 128 splot_col (G..S.)

10576 S (BA...) 80 _d1 (G.NS.) 80 th (B.N.I)

80 SCAN_N (G.NS.) 80 _d2 (G.NS.) 80 tth (B.N.I)

80 SLIT_H (G.NS.) 80 _d3 (G.NS.)

80 SLIT_N (G.N.C) 80 _f (G.NS.)

Memory usage is 41088 bytes.

16.FOURC>

The number preceding each name is the number of bytes of memory the variable con-
sumes. All the global variables in the list above come from the standard start-up
macro files. Those variables that begin with an underscore are internal to the stan-
dard macro package.

Flow Control

Flow control allows you to construct complex scans and other macros to control exper-
iments and take data. The syntax of the flow control is very similar to standard C.
For example, to list all the motor positions, you can use the following loop:

20 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

16.FOURC> for (i = 0; i < MOTORS; i++) {
17.more> printf("Motor %d %-10s = %g\n", i, motor_name(i), A[i])
18.more> }
Motor 0 Two Theta = 3
Motor 1 Theta = 1.5
Motor 2 Chi = 0
Motor 3 Phi = 0

19.FOURC>

As in C, the for statement contains within parentheses three optional expressions
separated by semicolons. The first expression is executed before entering the loop.
The second is the test done before each pass of the loop — if it evaluates false, the
loop is terminated. The third expression is executed at the end of each loop.

The conditional statements
if (condition) statement

and
if (condition) statement else statement

are also available. For example, to test whether a variable has been assigned a
value, you could examine the return value of the built-in whatis() function
(described on page 75 in the Reference Manual).

19.FOURC> if (whatis("DATAFILE")>>16&0x8000)
20.more> print "Warning, Data file is uninitialized!"
21.more> ;
Warning, Data file is uninitialized!

22.FOURC>

When there is a solitary if statement, a semicolon, extra newline or some other com-
mand must be read before the if statement will be executed, as it is not clear to the
parser whether an else statement will follow. If there is an else statement, it must
follow the if portion of the statement on the next line.

22.FOURC> if (whatis("DATAFILE")>>16&0x8000)
23.more> print "Warning, Data file is uninitialized!"
24.more> else
25.more> print "Data is being stored in", DATAFILE
Data is being stored in /usr/alan/default.dat

26.FOURC>

The while construction is also available. Usage is

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 21

26.FOURC> while (wait(0x22)) {
27.more> getangles
28.more> printf("%10.4f\r", A[tth])
29.more> }

30.FOURC>

As in C, continue and break statements may be used within loops. The statement
exit can be used anywhere and always causes a jump back to the command level.

Macro Facility

One of spec’s most powerful features is its provision for defining macros. Through
macros, you can simplify use of the diffractometer as well as determine the style and
format of the data output. Through the macro facility, you can customize the envi-
ronment to include any enhancements or specialized requirements for your experi-
ment. Standard macro sets included in the spec package support conventional two-
circle, four-circle and z-axis diffractometers along with some specialized liquid sur-
face diffractometers. These macros control the measurement and the recording of
experimental data and establish a standard format for ASCII data files.

An example of a simple macro that can be used to record a comment on the printer is
30.FOURC> def com ’
31.quot> on(PRINTER)
32.quot> printf("$*\n")
33.quot> off(PRINTER)
34.quot> ’

35.FOURC>

Notice the prompt shows the program is expecting the quote to be closed. The vari-
able PRINTER contains a string naming the printer device used to document the
diffractometer operation. To use the above macro, type:

35.FOURC> com This is a comment.
This is a comment.

36.FOURC>

The text This is a comment is substituted in the printf() function for the symbol
$* and is printed on both the screen and the printer.

Each argument following a macro call is available to the macro using $1, $2, ... ,
where $1 refers to the first argument, and so on. Up to 25 arguments may be used.
An argument is a string of characters separated by white space (spaces and tabs) or
enclosed in single or double quotes, $* represents all the arguments, and $# is the
number of arguments.

22 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

When a macro definition contains argument substitution, and you invoke that macro
with more arguments than needed, the extra arguments you typed up to the next ; , }
or newline disappear. However, if the macro does not use argument substitution in
its definition, text typed following the macro invocation is not thrown away.

To see what a macro contains, use the command prdef to print out the macro defini-
tion.

36.FOURC> prdef com
def com ’

on(PRINTER)
printf("$*\n")
off(PRINTER)

’
37.FOURC>

Notice that the form of the definition, if written to a file, would be suitable for read-
ing back in as a macro definition.

The standard macro library is read automatically the first time you run spec or
when you start the program with the -f flag. You can get a listing of all the currently
defined macros with the command lsdef .

37.FOURC> lsdef
ALPHA (4) bug (275) hklscan (1639) qdo (10)

AZIMUTH (4) ca (182) hkradial (334) rplot (10)

BETA (4) calcA (7) hlcircle (339) rplot_res (112)

CEN (10) calcE (7) hlradial (333) save (432)

Escan (1448) calcG (7) hscan (139) savegeo (1121)

F_ALPHA (4) calcHKL (7) initdw (42) saveslits (99)

F_AZIMUTH (5) calcL (8) initfx (39) saveusr (0)

F_BETA (4) calcM (7) initnec (44) savmac (118)

F_OMEGA (5) calcZ (7) initoki (39) scan_head (5)

F_PHI (5) cat (14) inittemp (33) scan_loop (5)

Fheader (0) cd (11) klcircle (339) scan_move (5)

Flabel (2) ci (177) klradial (333) scan_on (192)

Fout (2) cl (22) kscan (139) scan_plot (0)

Ftail (0) com (12) l (16) scan_tail (5)

H (4) comment (184) less (15) set (344)

K (4) config (109) lm (539) set_E (314)

L (4) count (6) lp_plot (674) set_dial (649)

LAMBDA (4) ct (47) ls (13) set_lm (349)

OMEGA (4) cuts (764) lscan (139) setaz (448)

Pheader (0) cz (177) lup (419) setlat (764)

Plabel (2) d (12) mail (16) setmode (927)

Pout (2) d2scan (564) measuretemp (1) setmono (368)

RtoT_0 (162) d3scan (688) mesh (1221) setplot (1119)

RtoT_1 (162) debug (212) mk (175) setpowder (867)

RtoT_2 (161) do (9) move_E (208) setscans (67)

RtoT_3 (163) dscan (95) move_em (8) setsector (1341)

TtoR_0 (160) dtscan (143) mv (175) setslit (464)

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 23

TtoR_1 (160) dumbplot (334) mvd (192) setslits (469)

TtoR_2 (159) end_reflex (131) mvr (191) settemp (217)

TtoR_3 (161) freeze (456) mz (268) show_cnts (327)

_check0 (240) g_aa (4) ned (14) showslits (114)

_chk_lim (266) g_al (4) newfile (1165) showtemp (133)

_cleanup2 (0) g_bb (4) newmac (270) splot (8)

_cleanup3 (0) g_be (4) offd (13) splot_res (150)

_count (158) g_cc (4) offp (12) startgeo (45)

_do (479) g_chi0 (5) offsim (126) starttemp (225)

_getcut (8) g_chi1 (5) offt (10) startup (245)

_head (1363) g_frz (4) ond (12) te (105)

_hkl_lim (84) g_ga (4) onp (11) teramp (458)

_hklline (1254) g_h0 (5) onsim (127) th2th (141)

_hklmesh (638) g_h1 (5) ont (9) tscan (732)

_loop (413) g_haz (5) or0 (549) tw (742)

_mo_loop (175) g_k0 (5) or1 (551) u (10)

_mot (124) g_k1 (5) or_swap (320) uan (23)

_move (37) g_kaz (5) p (8) ubr (31)

_pcount (132) g_l0 (5) pa (1301) uct (364)

_plot_scale (392) g_l1 (5) pl (176) umk (31)

_pmove (131) g_laz (5) pl_CFWHM (10) umv (19)

_scanabort (102) g_mo_d (5) pl_COM (10) umvr (20)

_setcut (8) g_mo_s (5) pl_FWHM (10) unfreeze (39)

_settemp (1) g_mode (4) pl_LHMX (10) upl (24)

_tail (83) g_om0 (4) pl_MAX (10) uwm (694)

_update1 (204) g_om1 (5) pl_MAXX (10) vi (13)

_update2 (255) g_phi0 (5) pl_MIN (10) vt52_rplot (1190)

_update4 (370) g_phi1 (5) pl_MINX (10) vt52plot (914)

_var (171) g_sect (4) pl_SUM (10) w (12)

a2scan (1172) get_E (74) pl_SUMSQ (11) wa (231)

a3scan (1439) getvar (65) pl_UHMX (10) waitall (7)

add_reflex (408) gpset (123) pl_xMAX (11) waitcount (7)

an (173) gt101_rplot(1190) pl_xMIN (11) waitmove (7)

ansi_rplot (1196) gt101plot (915) plot (40) wh (48)

ansiplot (933) h (4) plot_res (435) whats (744)

ascan (865) help (24) prcmd (42) wm (1232)

beep (12) hi (7) pts (87) yesno (162)

beg_reflex (283) hkcircle (339) pwd (11)

br (175) hklmesh (1095) qcomment (176)

38.FOURC>

Each macro is listed as well as the number of characters in its definition. Some
macros have zero length — their definitions are assigned during the course of an
experiment. In the standard library, macros that are only used within other macros
(and not meant to be referenced directly by the user) begin with an underscore.

Another macro handling command allows you to remove a macro definition.

24 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

38.FOURC> undef com

39.FOURC> prdef com
com: undefined.

40.FOURC>

There are several special macro names. If a macro named cleanup is defined, it will
be automatically invoked whenever there is an error or ˆC interrupt. This macro can
be defined to print a message, update a file, return motors to a starting position, etc.
For example, in the standard macro library, something like the following is defined
for the duration of a scan:

def cleanup ’
comment "Scan aborted after %g points." NPTS
undef cleanup

’

Similarly, a macro named cleanup1 can be defined, which behaves the same way.
However, if cleanup exists, it will be run first.

Also begin_mac , end_mac and prompt_mac have special meaning. (text forthcoming
...)

Command Files

Macros are generally defined and maintained using the command file facility. In
addition, sequences of experimental scans are often called up using command files.
Command files are ASCII files of text, created with any of the UNIX text editors, and
contain input just as it would be typed interactively. Command files are read line by
line by spec when invoked with the functions dofile() or qdofile() . For example,

40.FOURC> dofile("spec.mac")
Opened command file ‘spec.mac’ at level 1.

FOURC.1> (Commands from file echoed as read ...)

The .1 extension to the prompt indicates the level of nesting. Command files can be
nested to five levels.

The function qdofile() is identical to the function dofile() except that the com-
mands are not echoed as they are read.

40.FOURC> qdofile("spec.mac")
Opened command file ‘spec.mac’ at level 1.

41.FOURC>

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 25

If a file named spec.mac exists in your current directory, it is read as a command file
each time you run spec. You can have private initialization code and macros in this
file.

Two standard macros are defined to simplify reading command files. The macros do
and qdo are normally used in place of the above functions. In addition to supplying
the parentheses and quotation marks around the file name and recording the do com-
mand on the printer and in the data file, these macros also allow you to repeat the
last command file when a dot is given as the argument:

41.FOURC> qdo .

qdo spec.mac
Opened command file ‘spec.mac’ at level 1.

42.FOURC>

Just as with keyboard input, comments can be included in a command file. Every-
thing following a # up to a newline is ignored by spec.

Status and Help

Below is a summary of the diagnostic commands — most have been previously men-
tioned.

syms lists built-in, global and local symbols.
lsdef lists the names and sizes of macros.
prdef prints out macro definitions.
lscmd lists built-in keywords and functions.

All the above commands can take pattern arguments, employing the metacharacters
? and * . In a pattern argument, ? stands for any single character, while * stands
for any string of characters, including the null string. For example, lsdef ??? lists
all the three-letter macros:

42.FOURC> lsdef ???

CEN (10) com (12) ned (14) or0 (549) qdo (10) uct (364)
_do (479) lup (419) ond (12) or1 (551) set (344) umk (31)
bug (275) mvd (192) onp (11) pts (87) uan (23) umv (19)
cat (14) mvr (191) ont (9) pwd (11) ubr (31) upl (24)

43.FOURC>

Likewise, lsdef *scan shows all the macro names that end in scan .

26 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

43.FOURC> lsdef *scan

Escan (1448) ascan (865) dscan (95) hscan (139) tscan (732)
a2scan (1172) d2scan (564) dtscan (143) kscan (139)
a3scan (1439) d3scan (688) hklscan(1639) lscan (139)

44.FOURC>

A single * matches everything.

An on-line help facility exists to display files from spec’s help directory:
44.FOURC> help

Help is available on the following subjects (type "h subject"):

386 config files geometry macros powder sizes
ackno counting flow gpib news print spec
angles debug fourc help pdp serial syms
changes do functions history plot simulate syntax

45.FOURC>

help (and simply h) are macros that use the built-in gethelp() function to print files
contained in the help directory. The above listing is also produced by typing gethelp
("help") . The command gethelp("news") is automatically executed each time the
program starts up. New help files particular to a site may be added to the help direc-
tory.

UNIX Commands

The easiest way to write macro definitions is to use a standard text editor to create a
command file, and the easiest way to get at the text editor is through the unix()
function that spawns subshells.

45.FOURC> unix("vi macro.defs")
"macro.defs" 3 lines, 20 characters

46.FOURC> qdo macro.defs
Opened input file ‘macro.defs’ at level 1.

47.FOURC>

Any UNIX command may be spawned as in the above example. Because this is so
useful, a macro has been written to simplify the syntax. You could type:

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 27

47.FOURC> u vi macro.defs
"macro.defs" 3 lines, 20 characters

48.FOURC> qdo macro.defs
Opened input file ‘macro.defs’ at level 1.

49.FOURC>

The unix() command (or the u macro) with no argument will spawn a subshell. You
return to spec upon exiting the subshell. spec uses the shell environment variable
SHELL or shell, if set, to select the type of UNIX shell. By default, /bin/sh is used.
With arguments, unix() uses /bin/sh to execute the one-line command. For some
common UNIX commands, macros such as the following are defined in the standard
library.

def cat ’unix("cat $*")’
def ls ’unix("ls $*")’
def l ’unix("ls -l $*")’
def vi ’unix("vi $*")’

The working directory of spec can be changed as with the shell.
49.FOURC> cd data
Now in ‘data’

50.FOURC>

The macro cd used above is defined using the built-in function chdir() . Only the
working directory of the program spec is changed; the shell from which you started
spec is not touched.

Moving Motors

A primary purpose of spec is to manipulate an X-ray diffractometer according to a
calculated geometry. The automation of the angular settings is accomplished
through the use of motor controllers interfaced to the computer. spec can be config-
ured to control any number of motors.

As explained earlier, motor positions are referred to as dial positions and user posi-
tions. The diffractometer is operated in user positions. Dial positions are used to
provide a stable point of reference. The two differ possibly by a sign and/or an offset.
Dial positions should be set to always agree with the physical dials of the diffrac-
tometer motors. The user positions are then set in the line-up procedure of the

28 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

diffractometer. For example, they may be set to zero at the direct beam. The rela-
tions between the two positions are:

dial = hardware_register / steps_per_unit
user = sign × dial + offset

The hardware_register contains the value maintained by the stepper motor con-
troller. The value of steps_per_unit is assigned in the hardware configuration file, as
is sign. The latter must be chosen to agree with the conventions of the built-in geom-
etry calculations.

The motor positions are often placed in the A[] array. The array is built-in and its
elements can be used like any other variables. What makes it special, however, are
the commands that use the array to convey the positions of the diffractometer
motors. For example, the command getangles sets all of the elements of the A[]
array to the current motor positions in user angles, while the move_all command
sends the motors to the positions contained in A[] (in user angles). Typical usage is,

50.FOURC> waitmove # Make sure no motors are active.

51.FOURC> getangles # load A[] with user angles.

52.FOURC> A[0] = 3 # move motor #0 to 3.

53.FOURC> move_all # start the move.

54.FOURC>

(The # symbols introduce comments.) It is important to first wait for any previous
motions to complete. Then getangles is used to load the angle array with the cur-
rent positions. Only the values for the motors to be moved are reassigned before
using move_all to set the motors in motion.

A macro that would list the user positions of all the configured motors might be:
54.FOURC> def wa ’
55.quot> getangles
56.quot> for (i = 0; i < MOTORS; i++)
57.quot> printf("%9.9s = %g\n", motor_name(i), A[i])
58.quot> ’

59.FOURC> wa
Two Theta = 3

Theta = 1.5
Chi = 0
Phi = 0

60.FOURC>

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 29

The motor_name() function returns the motor name assigned in the configuration
file.

The motor positions are stored in three locations: in program memory, on the com-
puter ’s hard disk and in the hardware registers associated with the motor controller.
The program manipulates the angles in its memory. The values on the hard disk are
updated every time a motor is moved but are only read when the program is initial-
ized, or after the reconfig command is invoked. The controller registers count the
actual number of steps moved and should be the true positions of the motors (unless
a motor was switched off). Before each motor is moved, the controller registers are
compared with program memory. If there are discrepancies, you are notified and
asked which value is correct. The sync command can also be used to synchronize the
controller registers with program memory. The angles can get out-of-sync by moving
the motors with manual controls, by turning off the power to motor controllers or per-
haps by a computer crash.

Although the motor controllers work in steps, it is much more convenient to use real
units such as degrees (or, for linear motion, millimeters). The user and dial angles
are in these units, converted from steps by the step-size parameters that are read
from the configuration file.

The chg_dial(motor, dial_angle) function sets the dial register to dial_angle for
one motor. The chg_offset(motor, user_angle) function sets the offset used to
convert from dial positions to user positions for one motor. Often during the line-up
procedure you will want to zero a particular angle:

60.FOURC> chg_offset(th, 0) # set motor theta to zero

61.FOURC>

The set macro includes the above and documents the change on the printer and in
the data file.

61.FOURC> set th 0

Wed Aug 19 11:53:33 1987. Theta reset from 1.5 to 0

62.FOURC>

Dial and user settings may also be set by the spec administrator using the program
edconf. See page 202 in the Administrator ’s Guide for further details.

Usually, diffractometer motions have a limit of travel, beyond which physical damage
may occur (or a hardware limit switch tripped). Software limits therefore exist to
prevent you from accidentally moving a motor out of range. The lower and upper
limits for each motor are contained in internal arrays accessed through the

30 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

set_lim(motor_number, low, high) and get_lim(motor_number, flag) functions.
With the latter, the lower limit is returned if flag is less than zero, otherwise the
upper limit is returned.

If a move_all command would take any motor outside of its limits, an error message
is printed and no motors are moved. The limit values are stored in dial angles since
they correspond to physical limitations to the motion. The limit values are therefore
preserved as the user-angle offsets are changed. The set_lm macro can be used to
set a single motor’s limits:

62.FOURC> set_lm tth 0 360

Two theta limits set to 0 360 (dial units).

63.FOURC>

The angle arguments to the macro set_lm are given in user angles. (In this example,
dial and user angles are the same.)

Diffractometer Geometry

You can operate a two-circle diffractometer in terms of angles alone. However, for a
four-circle diffractometer (and others such as the z-axis or liquid-surface diffractome-
ters) it makes more sense to work in three-dimensional reciprocal space coordinates.
It is therefore necessary to be able to calculate angles according to the diffractometer
geometry.

spec is designed to accommodate a variety of diffractometer configurations. The par-
ticular calculations are contained in geometry code (the source for which is included
in the standard spec package.) accessible through the calc() function. The argu-
ments to calc() determine the particular code that is called. For example, a calcA
macro is defined as calc(1) . Its purpose is to load the A[] array with the angles cor-
responding to the current reciprocal space coordinates. The four-circle configuration
represents the three reciprocal space coordinates as the first elements of the built-in
array Q[] . For convenience, the following definitions are made:

def H ’Q[0]’
def K ’Q[1]’
def L ’Q[2]’

Thus, to move to a position in reciprocal space such as the point [100], the appropri-
ate commands would be

63.FOURC> H = 1; K = L = 0; waitmove; getangles; calcA; move_all

64.FOURC>

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 31

Whenever the move_all command is used, it is important that the A[] array contain
the current motor positions for all motors except the ones to be moved. In the above
example, the getangles command loads A[] with the current positions after the
waitmove ensures all motors have stopped. The calcA changes the appropriate ele-
ments of the A[] array and the move_all starts the motors.

Often, you might change a single angle, or several angles, and then wonder where in
reciprocal space the diffractometer is set. The calcHKL macro will take the positions
in the A[] array and set the variables H , K , and L to the calculated coordinates. For
example:

64.FOURC> waitmove; getangles; calcHKL; print H, K, L
1 0 0

65.FOURC>

The command getangles loads the A[] array with the current positions.

Counting

Another important function of the diffractometer program is to measure the scattered
X-ray intensities. spec supports several types of timers, scalers and multichannel
analyzers (MCAs). Timers control the count time. Scalers count detected photons.
MCAs accumulate many channels of counts and are used with energy-dispersive
detectors and positional-sensitive detectors.

To count the number of X rays incident on the detector per second, the counting hard-
ware must be able to accumulate detector counts accurately within a fixed time
period. The scaler hardware is gated by a clock that operates independently of the
computer. Thus, the response time of the computer to interrupts (real-time events)
does not affect the accuracy of the count. spec programs and starts the clock and
senses when the clock period, and hence the counting, has ended. spec can then
read the contents of the scalers and save the measurement in a data file.

Clearing the scalers and starting the clock is accomplished by the function
tcount(seconds) . To count for one second, type:

65.FOURC> tcount(1)

66.FOURC>

The contents of the scalers are accessed through the built-in S[] array. The hard-
ware scalers are read and their contents loaded into the scaler array by the get-
counts command. A second, associated string array, S_NA[] , is defined in the stan-
dard macros and identifies each scaler:

32 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

66.FOURC> getcounts; printf("%s = %g\n%s = %g\n%s = %g\n",\
67.cont> S_NA[0], S[0]/1000, S_NA[1], S[1], S_NA[2], S[2])
seconds = 1
monitor = 347
detector = 35031

68.FOURC>

The first scaler, labeled seconds , is usually fed a 1 kHz signal, so it actually tracks
milliseconds and is therefore divided by 1000. The number of scalers available
depends on the particular hardware and the number of detectors and monitors used.
The default scaler channel numbering for the first three scalers puts a 1 kHz time
signal in scaler 0, monitor counts in scaler 1 and detector counts in scaler 2.

You can also count to a fixed number of monitor pulses, rather than to a fixed time
period.

68.FOURC> mcount(1e4)

69.FOURC> getcounts; printf("%s = %.1f\n%s = %g\n%s = %g\n",\
70.cont> S_NA[0], S[0]/1000, S_NA[1], S[1], S_NA[2], S[2])
seconds = 28.8
monitor = 10000
detector = 1.00954e+6

71.FOURC>

Counting is asynchronous, i.e., the tcount() and mcount() functions return immedi-
ately after starting the clock. They do not wait until the counting period is over. Use
the wait() function to determine when counting is finished.

A useful macro has been written to count and print the scaler contents:
71.FOURC> ct 5

Thu Aug 20 19:11:51 1987
Seconds = 5 Detector = 175103 (35020.6/s) Monitor = 1730 (346/s)

72.FOURC>

If the argument is omitted, a default count time (stored in the global variable COUNT)
is used. A positive argument to ct signifies seconds; a negative argument signifies
monitor counts.

72.FOURC> ct -10000

Thu Aug 20 19:13:42 1987
Seconds = 28.3 Detector = 1.0434e6 (36869.3/s) Monitor = 10000 (353.36/s)

73.FOURC>

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 33

CAMAC, GPIB and Serial

Besides the built-in hardware support for moving motors and counting using CAMAC
(IEEE-583), GPIB (IEEE-488) and serial (RS-232C) interfaces, spec provides gener-
alized input /output support over these interfaces from the command level.

The ca_get(device, subaddress) command will return the contents of the
addressed module register (F=0 in the standard FNA CAMAC command code), while
ca_put(data, device, subaddress) will write the 24-bit value data to the
addressed module register (F=16). The device argument is the I /O module index
from the configuration file and can be 0, 1 or 2. The CAMAC slot number of the mod-
ule is set in the configuration file. The subaddress argument is the module’s subad-
dress (the A in the FNA).

spec allows you to send a string of characters to a GPIB instrument at any GPIB
address and to read a string of characters from any instrument. When reading char-
acters, spec will accept a string terminated by either a newline or by carriage
return—newline, or you can specify the number of bytes to be read. For example, to
initialize a particular voltmeter having GPIB address 12, you would issue the com-
mand:

73.FOURC> gpib_put(12, "D0R0Z0B0T0K1M0G1X")

74.FOURC>

That instrument might then be read with:
74.FOURC> {k_ohms = gpib_get(12); print k_ohms}
100.024

75.FOURC>

The command
75.FOURC> x = gpib_get(12, 4)

76.FOURC>

would read 4 bytes from device 12 and not look for terminators.

When sending strings using gpib_put() , you cannot send null bytes. Usually a
device that requires null lower order bits in a data byte will ignore the high order
(parity) bit. In this case, you can usually set that highest bit to avoid sending a null
byte.

The ser_get(device, n) and ser_put(device, string) functions access the serial
interface, where device is the index from the configuration file and can be 0, 1 or 2.
In ser_get() , n is the most number of bytes to read. The function will return after
reading one line (terminated by a newline or carriage return) from the device, even if

34 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

the number of bytes is less than n . In ser_put() , string contains the characters to
be written.

Using spec with C-PLOT and Other UNIX Utilities
Standard Data File Format

The format of the data files used by spec is set at the macro level. The files are
ASCII, so they can be easily manipulated by other UNIX utilities such as grep, sed,
awk or any of the editors. The format of files produced by the standard macros is
described here.

When opened with the newfile macro, the following header is written to initialize
the data file:

#F /tmp/data
#E 729994936
#D Wed Feb 17 19:22:16 1994
#C cu 110 User = bill
#O0 Two Theta Theta Chi Phi

Information or control lines begin with a # character, with the character in the sec-
ond column indicating the type of information that follows. The first line of the data
file header contains the name by which the file was opened. The next line is the
number of seconds from the UNIX epoch as returned by the time() function. In the
data that will follow, each scan point will include a field containing the number of
seconds elapsed since that file creation time. Next in the header is a line containing
the date as returned by the date() function, then a comment line. That is followed
by a line containing all the motor names in use. Each motor name is separated from
the other by two spaces. What will then follow will be various comment lines created
by the comment macros, user defined entries and scan data.

Each scan has a header that looks like the following, always beginning with a blank
line:

#S 1 hklscan 0.9 1.1 0 0 0 0 20 1
#D Wed Feb 17 19:25:55 1994
#T 1 (Seconds)
#G0 0 0 0 0 0 1 0 0 0 0 0 0
#G1 1 1 1 90 90 90 3 3 3 90 90 90 1 0 0 0 1 0 60 30 0 0 0 0 60 30 0 -90 0 0 0
#Q .9 0 0
#P0 29.745 29.745 90 0
#N 7
#L H K L Epoch Seconds Monitor Detector

The first line of the scan header contains the scan number followed by the basic scan

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 35

name and its arguments. (Scans invoked as hscan or kscan execute the basic
hklscan , scans such as lup or dscan execute ascan , etc.) The next line is the date
and time the scan was started. Following that, the #T control line indicates that the
scan was counting to time and for what duration at each point. A #M would indicate
counting to monitor.

The next lines give information that describe the diffractometer configuration at the
start of the scan. Following #G0 are the current values of the four-circle parameters,
which are defined four-circle macro file, macros/fourc.src. Following #G1 are the cur-
rent parameters describing the crystal lattice and orientation matrix. The identifica-
tion of these parameters is in the macro file macros/ub.mac. The #Q line gives the
H, K, L coordinates at the start of the scan, while the #P0 line gives the motor posi-
tions at the start of the scan with each column corresponding to the motor names in
the #O0 line of the scan header. The 7 after #N indicates there will be seven columns
of data in the scan, and the #L line gives the names for each column, each name sepa-
rated from the other by two spaces. The detector counts are always placed in the last
column, preceded by the monitor counts, if counting to time, or the elapsed time for
that data point, if counting to monitor. The Epoch column has the number of seconds
elapsed from the time of the #E at the start of the file.

Following the scan header is the scan data. These are just lines of space-separated
numbers that correspond to the column headers given with #L . Intervening #C com-
ment lines may lie within the rows of data if, for example, the scan was aborted and
then restarted with the scan_on macro. Otherwise, the data continues until the next
non-comment control line or blank line.

You can develop your own programs and scripts to extract data from the spec data
file, or you may want to use the scans.4 user function that is part of the C-PLOT pack-
age, or the stand-alone scans program that is based on scans.4.

Scans .4

The C-PLOT user function scans.4 reads in files of ASCII data according to a modest
set of conventions. In particular, scans.4 manipulates the X-ray scattering data from
the spec data files, doing scan averaging, background subtraction, data normaliza-
tion and error bar calculation. The C-language source code to scans.4 is always avail-
able on your system, is liberally commented and should always be consulted if there
is any question as to what operations are being done on your raw data points.

The scans.4 user function can be invoked from C-PLOT either as,
PLOT-> fn scans.4

or

36 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

PLOT-> fn scans.4 options scan-numbers

Use the second form when running from command files. The possible options are:

. Use same options as last time.
-i Initialize, used to start up function and return.
-f filename Select scan file name.
-p Print scan file contents.
+e or -e Calculate (or don’t) error bars from statistics.
+s or -s Sort and merge (or don’t) data by x values.
+d or -d Collect (or don’t) 3 columns of data.
+r or -r Rerange (or don’t) plot axis for each new data set.
+S or -S Retrieve scans by scan (or file) number.
+v or -v Print (or don’t) each line of scan file (verbose).
+n or -n Normalize (or don’t) data points.
-m Turn on +n flag and normalize to monitor counts.
-t Turn on +n flag and normalize to time.
x=# Set column for x values.
y=# Set column for y values.
z=# Set column for z values and turn on +d flag.

The default options are:
-f data +esSn -rvd -m x=1 y=-1

Retr ieving Scans By Scan Number or File Position Number

Scans can be retrieved by entering either the scan number (option +S , default) or the
file position number (option -S). Scan numbers are determined by the #S lines in the
file. The file position number is the sequence position of the scan in the file, irrespec-
tive of scan number. Normally, the scan number and the file position number are the
same.

When selecting by scan numbers, if there is more than one scan with the same num-
ber, the last one is retrieved. Specify which instance of a repeated scan to retrieve by
using the scan.sub syntax. For example, selecting scan 10.3 retrieves the third
instance of scan number 10.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 37

Negative numbers count back from the end of the file and are always considered to be
file position numbers. For example,

fn . -1

will always return the last scan in the file. You can read in multiple scans by giving
several scan numbers as arguments. You can read in a group of consecutive scans
with

fn . 3-7 10-14

The above reads in scans 3 through 7 and 10 through 14.

Merging Scans and Background Subtraction

The default +s option causes the data points from all the scans read in to be sorted by
x values and data points with the same x value averaged. If data is to be normalized
and/or error bars calculated, the appropriate weight is given to the count time for
each point.

Scan numbers that end with the letter b are used as background scans. The sort-
and-merge flag should be in effect when using background scans. Entering

fn . 12b 13 14b 15b 16 17b

for example, or
fn . 13-15 16-27b

will merge the data from the background scans with the data scans, subtracting the
background counts from the data counts at each x value. When doing merging and
background subtraction, the x values must be identical for the data points to be
merged.

File Conventions

scans.4 only uses some of the control lines in the standard spec data files described
earlier.

The control conventions used by scans.4 are:

38 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

#S number Starts a new scan. number is the user’s numbering
scheme.

#M number Indicates data was taken counting to number monitor
counts.

#T number Indicates data was taken counting for number seconds.
#N number Indicates there are number columns of data.

The following control lines do nothing, although they will be printed to the screen
while reading a scan.

#C comment ... Conventionally a comment.
#D date Conventionally the date.
#L lab1 lab2 ... Conventionally data column labels, with each label sepa-

rated by two spaces.

Data Columns

By default, x values are taken from the first column, y values from the last column.
Monitor counts are always taken from the column prior to the y column.

When entering column numbers, a negative number counts backwards from the last
column. If the column for x is zero, the value put in for x is just the row number of
the point with respect to the start of the data for the current scan.

More Details

After scans.4 reads and indexes a data file, it remembers the file length. If you
answer affirmative to the Change modes? query, scans.4 will add to the index if the
file has lengthened.

If you give a dot (.) as the command line argument or in response to Scans/options
query, the previous argument or option string will be used. That is, the string is
remembered, not the options chosen interactively using Change modes? For
instance, if you enter a long sequence of scan numbers and read in the scans, then
change something via Change modes? , you can simply enter a dot in response to
Scans/options and recover the previous sequence of scan numbers.

When you do enter a string of flags and scan numbers, the modes set by the flags only
apply to the scans that follow the flags and not the preceding scans.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 39

The Index File

Indexing a long ASCII data file to find at what byte offset each scan begins takes
time. Once scans.4 has indexed a file, it saves the index information in a binary-for-
mat index file. The name of the index file is formed by appending .I to the original
data-file name. As long as the index file is more recent than the data file, scans.4 will
take the index information from the index file.

Nor malization and Error Bars

The values returned as error bars are those due to counting statistics (the square
root of the number of counts). When the counts are derived from the algebraic combi-
nation of detector, background and monitor counts, the error bars are calculated
using the appropriate propagation of errors formalism.1

Contents

A contents program is included in the spec package. The program tries to print sum-
mary scan information from spec’s standard data files. Usage is

contents [options] file1 [file2 ...]

Current options are

-o output Name of output file, otherwise standard output is used.
-s start Starting number for first scan of first file.
-p page Lines per page.
-d Send control codes appropriate for DecWriter II.
-c Print #C comment lines.

1P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, (McGraw-Hill, New York,
1969), p. 64.

40 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Showscans

The showscans program is a shell script that serves as a front end for an awk script
called show.awk, which is installed in the spec auxiliary file directory. The awk
script prepares a C-PLOT command file that will be automatically run to make sum-
mary plots of scans from spec data files. Twelve scan plots are placed on each page.
The text is very small, so a high resolution display device is recommended.

Usage is
showscans [options] [file_options] file [[file_options] file ...]

where the global options relate to C-PLOT commands and are:

−eb error_bars Error bar mode (default is 0, off).
−ft font Font code (default is font 2).
−sy symbol Symbol code (default is L, a line).
−zi filter Graphics filter (default is psfilter).
−w Wait for keyboard <return> after each page
−x Shorthand for −zi @x11 −rotate@ -w

The file_options apply only to the next file on the command line and are:

-f from_scan_number Starting scan number for the following file.
-t to_scan_number Ending scan number for the following file.

In no scan numbers are specified, all the scans within a file will be processed.

File names that end with .I are ignored as they are assumed to be scans.4 index files,
allowing you to use metacharacters to specify filenames a little more freely.

The awk script recognizes all the standard scan headings produced by the standard
spec scan macros and uses that information to select the x-axis label and the column
for the independent variable in the data file. The title of each of the small plots is the
starting Q vector of the displayed scan, taken from the #Q line of the data files.

If the monitor counts are zero for any point in a scan, that scan is not plotted. The
show.awk file can be edited to disable that feature.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION USER MANUAL AND TUTORIALS 41

42 USER MANUAL AND TUTORIALS INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

REFERENCE MANUAL

44 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Introduction
The material contained in this part of the documentation describes most of the built-
in features of the spec program, that is, those parts of spec that are compiled into
the code and cannot be changed at the installed site. These features include the user
interface and the general hardware support, but do not include application-depen-
dent features, such as geometry code and macro libraries.

Inter nal Str ucture Of spec
This section briefly explains spec’s internal structure to give an overview of how it is
constructed.

First, consider how a user’s input gets interpreted. The initial translation of charac-
ters typed at the keyboard (or read from a command file) is done by the input prepro-
cessor, which keeps track of the input sources and handles command recall (or his-
tory) substitution.

The input text is then broken into tokens by the lexical analyzer. Tokens represent
the different kinds of input objects, such as keywords, operators, variables, number
constants and string constants. When the lexical analyzer recognizes a predefined
macro name, its definition, possibly with argument substitution, is pushed back onto
the input stream to become further input to the lexical analyzer.

The parser in spec repeatedly calls the lexical analyzer to obtain tokens. The parser
contains a set of grammar rules that determine acceptable sequences of tokens. A
syntax error occurs when input violates these rules. When enough input is read to
satisfy a complete set of rules, the parser returns a parse tree (or mini-program) to
the executor. The executor code then steps through the parse tree, calling the appro-
priate internal functions for each action.

The macro-definition command def is an exception to the above rules. As soon as the
parser recognizes the def command sequence, the macro name and its definition are
saved and made available to the lexical analyzer, even while the parser is still build-
ing the mini-program. A different command, rdef , defers storing the macro defini-
tion until the mini-program is executed. The rdef command is useful when some
flow control logic needs to be run to decide what definition to assign to the macro.

Understanding the difference between the parse phase and execution phase of spec
is important. Each time the command-level prompt is given, a new parse tree will be
created. If several semicolon-separated commands are given on the same line, a sep-
arate parse tree will be created for each. However, curly brackets can be used to

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 45

group any number of lines together to form just one parse tree. A significant conse-
quence of the parse tree mechanism is limitation of the scope of a nonglobal variable
to the statement block in which it is referenced.

spec may detect error conditions during each of the phases described above. Most of
these errors (and the interrupt character, usually a ˆC) reset spec to the command-
level prompt.

spec manages a memory arena that is used as storage for parse trees, macro and
variable symbol tables and command history. In earlier versions of spec, this mem-
ory arena was fixed in size. spec now allows the arena to grow up to the maximum
data-space size allowed by the system. The memstat command displays spec’s mem-
ory usage.

spec also manages some auxiliary files. The user’s state file stores the important
parts of the memory arena. This file is used to let the user exit and restart spec
without losing the program’s state. Another file stores the current data points and
data group configuration, so that they, too, will be available after exiting and restart-
ing spec. These files are placed in the userfiles subdirectory of each configuration’s
auxiliary file area.

Syntax Description
Comments

A # introduces a comment. Everything following a # on an input line is ignored
(unless the # is within a string). Comments are retained in macro definitions and are
counted in the macro length.

Identifier s

An identifier is a name — it can be a variable name, a macro name or an array name.
An identifier may begin with the letters a-z , A-Z or _ (underscore). The remaining
letters in a name may be those characters or the digits 0-9 . There is no limit to the
number of characters in a variable name. In the syntax rules described later, such
names are represented by the term identifier.

46 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Arrays

Arrays are formed using square brackets, as in identifier [expression] . spec has
two kinds of arrays: associative arrays and data arrays.

Associative Arrays

Associative arrays have been around since the earliest versions of spec. For associa-
tive arrays, the array index expression can be any numeric or string-valued constant
or expression, although the internal code always uses the string value. Thus
A["12"] refers to the same element as A[12] . Elements of associative arrays can
contain numbers or strings. Currently, all built-in global arrays, such as those that
hold motor positions and scaler counts, are associative arrays.

Associative arrays may also be two dimensional, as of release 4.01.11. Internally, the
two array indices for each element are stored as a single string formed using the
string value of the first index, followed by the character \034 , followed by the string
value of the second index. You can access such a 2D array element using a single
index constructed according to the above recipe. That is, arr["list"]["one"] refers
to the same item as arr["list\034one"] .

Data Arrays

The second kind of array is the data array introduced in spec release 4.00. The data
arrays store and manipulate their contents far more efficiently than associative
arrays, and also use a far more intuitive syntax than the data group facility
(described later) for which they are an alternative. For data arrays, the array index
must be a number, and array elements are numbered consecutively starting at zero.
Data arrays must be explicitly declared using the array keyword. The data values of
data-array elements are not currently saved in the user’s state file, unlike associative
array elements and the contents of data groups.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 47

Keywords

The following names are reserved, being either grammar keywords or the names of
built-in commands or functions. New reserved names may be added. The list can be
obtained using the built-in command lscmd . Parentheses after a name indicate a
function.

acos() data_get() gethelp() motor_num() sleep()
array data_grp() getline() motor_par() sock_io()
array_dump() data_info() getval() move_all spec_par()
array_fit() data_nput() global move_cnt split()
array_op() data_pipe() gpib_cntl() off() sprintf()
array_pipe() data_plot() gpib_get() on() sqrt()
array_plot() data_put() gpib_poll() open() srand()
array_read() data_read() gpib_put() plot_cntl() sscanf()
asc() data_uop() history plot_move() stop()
asin() date() if plot_range() string
atan() dcb() image_get() port_get() substr()
atan2() def image_par() port_getw() syms
bcd() deg() image_put() port_put() sync
break delete in port_putw() tan()
byte dial() index() pow() tcount()
ca_cntl() dofile() input() prdef time()
ca_fna() double int() print tty_cntl()
ca_get() else length() printf() tty_fmt()
ca_put() eprint local qdofile() tty_move()
calc() eprintf() log() quit ubyte
cdef() exit log10() rad() ulong
chdir() exp() long rand() undef
chg_dial() exp10() lscmd rdef unglobal
chg_offset() extern lsdef read_motors() unix()
close() fabs() mca_get() reconfig user()
cnt_mne() file_info() mca_par() return ushort
cnt_name() float mca_put() savstate vme_get()
cnt_num() fmt_close() mca_sel() ser_get() vme_get32()
constant fmt_read() mca_sget() ser_par() vme_move()
continue fmt_write() mca_spar() ser_put() vme_put()
cos() for mca_sput() set_lim() vme_put32()
counter_par() fprintf() mcount() set_sim() wait()
data_anal() get_lim() memstat shared whatis()
data_bop() getcounts motor_mne() short while
data_dump() getenv() motor_name() sin() yesno()
data_fit()

48 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Numer ic Constants

Numeric constants can be integers or floating point numbers. Integer constants are
considered octal if the first digit is 0 . Valid digits in the rest of the constant are 0
through 7 . A hexadecimal constant begins with 0x or 0X and is followed by digits or
the letters a or A through f or F , which have values 10 through 15. Otherwise, a
sequence of digits is a decimal constant.

Floating-point constants have an integer part, a decimal point, a fraction part, an e
or E and an optionally signed exponent. The integer part or the fraction part, but not
both, may be missing. The decimal point or the e and exponent, but not both, may be
missing.

Octal and hexadecimal constants can have values from ± 2 31. As spec stores number
values internally in double-precision format, the range of other integer and floating
constants is determined by the range of double-precision numbers allowed by the
host computer’s compiler and architecture. To conserve resources, spec by default
stores the numbers used in the data group facility in single-precision format. Dou-
ble-precision can be selected at the spec administrator ’s option, though, when spec
is installed.

The following are valid numeric constants.
65535 0177777 0xFFFF
+1066 1.066e3 1.066e+3

Str ing Constants

Strings are delimited by pairs of single or double quotes. The following escape
sequences, introduced by a backslash, can be included within strings to represent cer-
tain special characters:

\a attention, audible alert (bell)
\b back space
\f form feed
\n newline
\r carriage return
\t horizontal tab
\\ backslash
\’ single quote

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 49

\" double quote
\ooo octal code
\[xx] tty control code

Tty control codes are only recognized when embedded in strings passed to spec’s
built-in functions tty_move() and tty_fmt() . The recognized strings for xx are
described in the description of the tty_cntl() function on page 87.

For any other character x , \x is just that character. The sequence \ooo represents
one to three octal digits that have the ASCII value of a single character. For exam-
ple, \033 represents the escape character.

A character string can be continued over more than one line by using a \ at the end
of a line. On the other hand, new lines not preceded with a \ are inserted literally
into the string.

Str ing Patter ns and Wild Cards

For the commands lscmd , lsdef , prdef and syms , if the characters ? or * appear in
the arguments, the argument is taken as a pattern. Only information about those
commands, macros or symbols that match the pattern is displayed. In forming the
pattern, the character ? matches any single character, while * matches any string of
characters, including the null string.

Command Recall (Histor y)

spec standard history feature lets you recall previous commands1. Examples of the
recognized syntax are:

1spec is usually installed with the optional GNU readline history library, at the spec administrator ’s option.
With the readline library, the history syntax is greatly expanded. In addition, features such as command-line
editing, command completion and tilde expansion become available. See the on-line readline help file for detailed
information.

50 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

!! Redo the previous command.
!14 Redo command number 14.
!-2 Redo the second to previous command.
!asc Redo the last command that began with asc.
!asc -10000 As above and append -10000 to the command.
history List the last 1000 commands.
history N List the last N commands.
history −N List the last N commands in reverse order.

The command number is prepended to the spec prompt as an aid in using the history
feature. Only commands typed at the keyboard are remembered for history, and no
more than 1000 commands are retained. The history feature cannot be used in com-
mand files.

Command recall must occur at the beginning of a line, although initial white space is
allowed. Text may follow the command-recall word to extend that command.

Appending :s/left/right/ to a recalled command will modify the first occurrence of
the string left in the recalled command to the characters right . The delimiter of
the left and right strings may be any character. The final delimiter is optional. If
left is empty, the last entered left string is used as the pattern to match.

In addition, ˆleftˆrightˆ at the start of a line is shorthand for !-1:s/left/right/ .
In this case, the circumflex (ˆ) must be used as the delimiter. The final delimiter is
optional.

The history is saved in the state file when exiting spec. Restarting spec reads in the
saved history from the state file.

Star ting Up

When you run spec, you invoke it using a name such as fourc, twoc, surf, spec, etc.
That name determines the kind of geometry code that will be available and which
macro and configuration files in the auxiliary file directory will be used, as explained
below.

The following command line options are recognized by spec:

−f − Fresh start. All symbols are set to their default values and the standard macros
are read to establish the default state.

−F − Clean and fresh start. All symbols are set to their default values but no com-
mand files are read and no macros are defined. Only the built-in commands
are available.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 51

� ����� imulation mode. No hardware commands are issued. Simulation mode cannot
be turned off after entering the program.

��� �	� es, change motor controller registers initially if they disagree with the settings
file. Normally, spec requires you to confirm such a change. This flag would be
useful if you know controller power had been turned off, and the controller’s
current positions should be updated with the software positions.

��
 option=value ��� nitializes the spec_par() option to value. Type spec_par("?")
from the spec prompt to see the available options.

��
 fd pid ��� ndicates that spec input is coming from a pipe from another program.
The argument fd is the file descriptor that spec should use for standard input.
The argument pid is the process ID of the spawning process. If fd is zero, spec
will not re-echo input from the file descriptor to spec’s standard output.

��� ��� ndicates that spec should operate in quiet mode and allow output to all devices
to be turned off. This option is only valid when used with the ��
 option.

��� geometry �	� orce loading of macro files and activation of geometry calculations for
the specified geometry, while using the configuration files taken from the name
by which spec is invoked.

��� my_name �	� se my_name instead of the name by which spec was invoked to
establish the command prompt and the name of the directory in SPECD in
which the configuration-dependent files exisit. This command also sets the
geometry to my_name. Follow this option with the ��� option to choose a differ-
ent name for the geometry.

��� user �	� se user’s last saved state as the current user’s initial state.
��� tty �	� se the current user (or user’s) last saved state from the terminal specified by

tty as the initial state. The terminal can be specified as ��� /dev/tty01 or ��� tty01.
Pseudo-tty names, such as /dev/ttyp0, /dev/ttyp1, etc., are saved as
/dev/ttyp#, since there is no special significance to the number.

��� fake_tty �	� his option creates a user state associated with fake_tty, which may be
any name. This option allows you to bypass the locking feature that prevents
multiple instances of spec to be started by the same user from the same termi-
nal.

��� debug ��� ets the initial value of the debugging variable DEBUG to debug, which
maybe either in decimal or hexadecimal (with a leading 0x) format. The avail-
able debugging categories are described on page 57.

��� direc �	� se direc as the auxiliary file directory, instead of the compiled-in name
(usually /usr/local/lib/spec.d) or the value of the SPECD environment vari-
able.

52 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

In some installations, spec is installed as a set-user-id root process, to allow certain
calls that allow privileged access to hardware device registers. The first thing spec
does on start up is to set the effective user and group ids to that of the real user, so
there is no danger of the user spawning subshells or creating files as root. The root
effective id is only used for the duration of the calls that enable the privileged access.

spec then performs other initialization tasks, including obtaining values for its inter-
nal variables DISPLAY , GTERM , TERM , HOME and PAGER from variables of the same
name in the process environment. It also obtains the value of the SHELL environment
variable for use with the unix() function.

spec then reads the hardware configuration from the appropriate config file from the
auxiliary file directory. The path name of that file is SPECD/spec/config, where
SPECD is the auxiliary file directory, established when spec is installed (or by the � �
invocation flag, or by the SPECD environment variable), and spec is the name by
which spec is invoked.

The first time a user starts spec, up to seven macro files are automatically read. The
path names of these files are

SPECD/standard.mac
SPECD/geom.mac
SPECD/spec/geom.mac
SPECD/site_f.mac
SPECD/site.mac
SPECD/spec/conf.mac
./spec.mac

where SPECD is the auxiliary file directory, as described above, geom matches the
first four letters of the name by which spec was invoked and spec is the complete
name by which spec was invoked. The files are only read if they exist. The files
SPECD/standard.mac, SPECD/geom.mac, SPECD/spec/geom.mac and
SPECD/site_f.mac are only read if the user is starting spec for the first time or has
invoked spec with the �

�
(fresh start) flag.

Each time spec starts up, if a macro named begin_mac is defined, that macro will be
run after reading any startup command files, but before input is read from the key-
board.

After reading the start-up macro or command files and possibly running begin_mac ,
spec prompts the user for commands.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 53

Keyboard Interr upts

On UNIX systems, two different asynchronous signals can be sent from the keyboard
to programs. These signals are interrupt and quit. A ˆC is usually used to generate
the interrupt signal. A ˆ\ generates a quit on many versions of UNIX, although ˆV is
used on some others. The control key assignments are arbitrary and can be changed
using the stty command from the UNIX shell. A common problem for new users is
that their default UNIX environment has either no keys or archaic keys assigned to
these signals. To display the current key assignments on BSD-type systems, type
stty everything from the shell. On System V systems, type stty -a .

With spec, the interrupt key halts all activity, including asynchronous motor motion
or counting, and closes all command files. All output files and devices (except log,
dlog and elog files) are closed. On keyboard interrupts (and command and syntax
errors), cleanup macros, as described below may be run.

Typing the quit character will asynchronously terminate spec without saving the
user ’s state. However, if motors are moving, the program will wait for them to halt
and then update the settings file.

Cleanup Macros

On keyboard interrupts (and command and syntax errors), if macros named cleanup
or cleanup1 have been defined, their definitions are read as input. Typical uses of
the cleanup macro are to return motors to starting positions and/or to insert com-
ments in data files after aborted scans. After running the cleanup and/or cleanup1
macros, spec gives the standard prompt and waits for the next command from the
keyboard. If there is another ˆC interrupt or error while the commands contained in
the cleanup or cleanup1 macros are being executed, the macro definitions are
removed.

As of release 4.03.13, the additional cleanup_once and cleanup_always macro
names are recognized. Each, if defined, will be pushed on to the input stream on ˆC
interrupts and command and syntax errors, as above. The cleanup_once definition,
though, is always removed before the next main prompt is issued. On the other
hand, the cleanup_always definition will never be automatically removed. Defini-
tions for these macros should be constructed using the cdef() (chained macro) func-
tion (described on page 91) in order to allow various clean-up actions to be added and
removed during the flow of arbitrary statement blocks.

54 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Exiting

A spec session is normally terminated by typing ˆD at the start of an input line. As
of release 3.01.04, the quit command will also terminate spec, but only when typed
directly from the keyboard or when read from a command file. The quit command
can’t be included in a macro.

As of release 4.02.04, if there is a macro named end_mac defined, it will be run after
the ˆD or quit command.

When exiting, spec saves the user’s state, and if any motors are moving, waits for
them to halt and then updates the settings file.

If spec appears hung, typing the quit character (often ˆ\) should terminate the pro-
gram. If spec is waiting for unresponsive hardware to indicate it is finished with a
move or a count, typing the quit or interrupt character again may be necessary.

Variables

A variable is brought into existence simply by using it. Variables assigned values at
the top level (outside of any curly-bracketed statement block) are automatically made
global. Otherwise, unless explicitly given global attributes, the scope of a variable
lies only within the statement or statement block in which it occurs.

The possible attributes of a variable are as follows:

Local A symbol with scope only in the statement block in which
it appears.

Global A symbol with scope that carries across separate state-
ment blocks. All built-in symbols are global.

Built-in A symbol that is compiled into spec and that cannot be
removed.

Constant A global symbol that cannot have its value altered by or-
dinary assignment. Such a symbol can only be changed
using the constant command.

Immutable Certain built-in symbols and motor and counter mnemon-
ics from the hardware config file, which cannot have their
values altered.

Variables can have string, number or array type and may have both string and num-
ber types simultaneously. The print command always prints the string representa-
tion of a variable. The formatted printing commands printf , fprintf and sprintf

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 55

print the string or number value, depending on the format specification. If the string
value cannot be interpreted as a number, its number value is zero. All number val-
ues are maintained as double-precision floating-point quantities.

Uninitialized variables have a number value of zero and a string value of "" (the null
string). Although associative array indices are internally derived from the string
value of the index expression, if the index is an uninitialized variable, its value for
purposes of indexing the array is the string "0" .

Functions such as input() , getline() , gpib_get() and ser_get() return string
values that possibly represent numbers. When the string is used in a number con-
text, automatic string to number conversion takes place. The conversion rules
require that there are no extraneous characters in the string. An initial 0x or 0X
introduces a hexadecimal integer. An initial 0 introduces an octal constant, unless
there is a decimal point or an e or E exponential string, in which case the entire
string is interpreted as a decimal number, leading zero notwithstanding.

Built-In Var ia bles

The following is a list of most of spec’s built-in variables. Some site-dependent code,
along with most of the standard diffractometer geometry code, will create additional
built-in variables. Also, motor and counter mnemonics entered in the hardware con-
figuration file become built-in variables when the config file is read by spec.

A[] — is an array dimensioned to the number of motors as obtained from the config
file. The function read_motors(0) fills the array with user angles. The user
can assign values to any of the elements. The commands move_all and
move_cnt use the values in the array. Also, the various site-dependent, geome-
try-specific calculations, accessed through the calc() user-hook function, base
their results on the values in this array or place new values in it.

COLS — is a number-valued variable set to the number of text columns on the user
terminal or workstation window. The value is used for formatting text-mode
plots and on-line help files. COLS is generally automatically assigned a value
from the system terminal data base when spec starts up, or, if available, by
using the TIOCGWINSZ command in the ioctl() system call whenever a value for
COLS is needed.

COUNTERS — is the number of counters being used as determined from reading the
config file.

CWD — is a string-valued variable that contains the name of the user’s current work-
ing directory. It is assigned a value when spec starts up, and is updated each
time the chdir() function is executed.

56 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

DEBUG — is a user-assignable numeric variable that determines the level of debug-
ging messages printed. The level is determined by the sum of the values given
in this table:

Hex Decimal What is shown
0x1 1 Show input tokens during parsing.
0x2 2 Show node execution while running.
0x4 4 Show node allocate and free.
0x8 8 Show symbol table creation and lookup.

0x10 16 Show value get and set.
0x20 32 Show misc info.
0x40 64 Show hardware related info.
0x80 128 Show more hardware related info.

0x100 256 Show macro substitution.
0x200 512 Show memory allocate and free.
0x400 1024 Show input after macro expansion.
0x800 2048 Print warning messages.

0x1000 4096 Show certain low level hardware info.
0x2000 8192 Show data array allocation.
0x4000 Show signal blocking.
0x8000 Show sleeps and other low level hardware info.

0x10000 Show input file queuing.
0x20000 Show readable runtime debugging.
0x40000 Print input context on execution-time errors.

A change in the value of DEBUG only takes effect after the complete mini-pro-
gram in which the new value is assigned has been executed. If a debugging log
file is open (any file that begins with the characters dlog or ends with the
characters .dlog), debugging messages are only written to that file, not to the
screen or any other file or device.

DISPLAY — is a user-assignable, string-valued variable. Its value at the time an X-
Windows graphics filter process is spawned with the plot_cntl("open") func-
tion (with GTERM set to "x11") determines on which host and screen the plot
window will be displayed. The initial value for DISPLAY is taken from the envi-
ronment variable of the same name.

FRESH — is a built-in variable that has an initial nonzero value if spec was invoked
with the �

�
(fresh start) flag or if a fresh start was forced by an incompatible

state file version. The value is zero otherwise, and is set to zero in any case
after all start-up command files and macros have been read and their com-
mands executed. In the standard start-up macros, the value of FRESH is

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 57

checked to see if initial default parameter assignments should be made.

GTERM — is a user-assignable, string-valued variable containing a value describing
the display type to use for high-resolution graphics. Its value will be taken
from an environment variable of the same name when spec starts up, if such a
variable exists. Currently supported GTERM types are vga , vpc , ega , epc , herc
and cga for various PC console graphics (not linux); x11 for X Window System
graphics; and sun for SunView graphics. If GTERM is not set in the environment
or has not been assigned a value, it defaults to x11 .

HOME — is string valued and is initialized to the user’s home directory as taken from
the environment variable HOME. If not found in the environment, its value is
set to the current directory.

MOTORS — is the number of motors being used as determined from reading the config
file.

PAGER — can contain the name of a program to use for paging through spec help
files. Such a program can be an alternative to spec’s built-in paging code,
allowing, for example, searching and line-by-line perusal. On start up, spec
examines the environment variables SPEC_PAGER and PAGER , in turn. If one
exists, its value is assigned to PAGER . Also, if a version of the less utility
greater than version 332 is installed on the spec platform, the standard
macros will assign to PAGER a string that invokes less with special flags. Oth-
erwise, PAGER is left unset.

PI — is a number-valued symbol with the value 3.14159... .

ROWS — is a number-valued variable set to the number of text rows on the user termi-
nal or workstation window. The value is used for formatting text-mode plots
and on-line help files. ROWS is generally automatically assigned a value from
the system terminal data base when spec starts up, or, if available, by using
the TIOCGWINSZ command in the ioctl() system call whenever a value for ROWS
is needed.

S[] — is an array that will be filled with the hardware scaler contents when the com-
mand getcounts is executed.

SPEC — is string valued and set to the name by which spec is invoked, such as fourc.

SPECD — is string valued and set to spec’s auxiliary file directory. The default name
is compiled in when spec is installed, but can be overridden by the ��� invoca-
tion option or by the SPECD environment variable.

TERM — is a user-assignable, string-valued variable. It is initialized to the user’s ter-
minal type as taken from the environment variable TERM. If not found in the
environment, it is set to terminal-type vt100.

58 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

USER — is string valued and is set to the login name of the current user.

VERSION — is string valued and is set to the version number of spec, as in 3.03.11 .

The values of A[] , S[] , DEBUG , TERM , GTERM , ROWS and COLS can be changed by the
user. The other variables are immutable and cannot have their value changed.

Motor mnemonics obtained from the config file become built-in, immutable variables.
User-added code, such as the X-ray diffractometer geometry code, typically creates
other built-in variables, such as G[] , Q[] , U[] and Z[] .

Operator s

The following tables summarize the operators available in spec. (Almost all these
operators work the same as in the C language, so a C-language reference manual
could be consulted to provide more detailed information on the use of unfamiliar
operators.) Operators that require integral operands use the integer part of noninte-
gral operands. The precedence rules give the evaluation order when multiple opera-
tors appear in the same expression.

Unar y Operator s

Unary operators have equal precedence, are evaluated right to left and have higher
precedence than the binary operators.

Operator Name Result
− Unary minus Negative of operand.
+ Unary plus Operand.
! Logical negation 1 if operand is zero, 0 otherwise.
++ Increment Increment the operand by one.
−− Decrement Decrement the operand by one.
˜ Bitwise not One’s complement of operand. (A tilde.)

When used as prefix operators, ++ and −− operate before the result is used in the
expression. When used as postfix operators, ++ and −− are done after the current
value of the operand is used in the expression.

Indirection Operator

The @ character is a special unary operator that provides indirection when used in
front of a symbol name (available as of release 4.03.01). The behavior is similar to

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 59

the C language * indirection operator. In spec, the @ operator allows reference to a
variable whose name is the string value of another variable. For example:

1.FOURC> a = "b"; b = PI; print a, @a
b 3.14159

2.FOURC>

Binar y Operator s

All binary operators have lower precedence than the unary operators. Binary opera-
tor precedence is indicated in the grammar rules that are listed on page 64, where
higher precedence operators are listed first, and operators with the same precedence
are listed on the same line. Binary operators with the same precedence are evalu-
ated left to right.

Operator Name Result (L is left operand, R is right)
∗ Multiplication L × R
/ Division L / R
% Modulus Remainder of L / R (operands are integers).
+ Addition L + R
− Subtraction L � R
< Less than 1 if L < R (or 0 if not).
> Greater than 1 if L > R (or 0 if not).
<= Less than or equal 1 if L ≤ R (or 0 if not).
>= Greater than or equal 1 if L ≥ R (or 0 if not).
== Logical equality 1 if L is equal to R (or 0 if not).
!= Logical inequality 1 if L is not equal to R (or 0 if it is).
&& Logical and 1 if both L and R are nonzero, otherwise 0.
|| Logical or 1 if either L or R are nonzero, otherwise 0.
<< Bitwise left shift L shifted left by R bits (both integers).
>> Bitwise right shift L shifted right by R bits (both integers).
& Bitwise and “Bitwise and” of integers L and R.
ˆ Bitwise exclusive or “Bitwise exclusive or” of integers L and R.
| Bitwise or “Bitwise or” of integers L and R.

Concatenation LR
If either of L or R are strings, the relational operators < , > , <= , and >= use the lexico-
graphic comparison provided by the C subroutine strcmp().

60 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

The concatenation operator comes into effect when expressions are combined sepa-
rated only by space characters. The resulting expression is the concatenation of the
string values of the constituent expressions. Concatenation is only allowed on the
right side of an assignment operator, in the arguments to the print command and in
the value assigned to a variable in a constant statement. Concatenation has lower
precedence than the other operators. For example,

2.FOURC> print "ab" "cd" 1 2 + 3 4
abcd154

3.FOURC>

Assignment Operator s

Operator Name Result
= Equals L = R
+= Plus equals L = L + R
−= Minus equals L = L � R
∗= Times equals L = L × R
/= Divide equals L = L / R
%= Mod equals L = L % R
<<= Left-shift equals L = L << R
>>= Right-shift equals L = L >> R
&= Bitwise-and equals L = L & R
ˆ= Bitwise-exclusive-or equals L = L ˆ R
|= Bitwise-or equals L = L | R

Ternar y Operator

spec, like the C language, has one ternary operator, which works in a manner simi-
lar to the if-else construction and uses the characters ? and : . Its use is

expression1 ? expression2 : expression3
where the result of this entire expression is expression2 if expression1 is nonzero, oth-
erwise expression3.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 61

Flow Control
Conditional Statement

The forms of the conditional statement are
if (expression) statement
if (expression) statement else statement

The expression is evaluated in both cases. If nonzero, the first statement is exe-
cuted. In the second form, if expression is zero, the second statement is executed.
Each else is always matched with the last else-less if within the same statement
block.

While Statement

The form for the while statement is
while (expression) statement

The expression is evaluated and the statement executed until expression is zero.

For Statement

The for statement comes in two forms. The first is
for (expression1 ; expression2 ; expression3) statement

The flow expressed in this statement can be thought of as
expression1
while (expression2) {

statement
expression3

}

Any of the expressions can be missing. A missing expression2 is equivalent to
while (1)

62 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

The second form of the for statement concerns associative arrays. A syntactical fea-
ture for these arrays (forms of which are available in the standard awk and gawk
utilities) is available in spec as of release 4.01.05. The construction

for (identifier in assoc-array) statement

will run through each element of the associative array assoc_array assigning to
identifier the string value of the index of each element. Note, though, the order in
which the elements are assigned should be considered arbitrary.

For two-dimensional associative arrays, the construction
for (identifier in assoc-array[expr]) statement

will step through each element of assoc-array having expr has the first index.

Break Statement

The statement break terminates the smallest enclosing while or for loop.

Continue Statement

The statement continue passes control to the loop-test portion of the smallest enclos-
ing while or for loop.

Exit Statement

The statement exit terminates execution of the current parse tree and jumps control
back to command level just as if an error occurred or a ˆC was typed.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 63

Grammar Rules

This syntax summary defines how all the built-in keywords, operators and commands
of spec can be combined. These grammar rules are similar to those given in stan-
dard C-language manuals. Operators are listed in order of precedence, with the
highest precedence operators listed first.

The following terms are used in the grammar rules:

lvalue - “Left value”, something on the left side of an equals sign.
binop - A �� �� �����
 	���
������� �� �� ���� ���� �� �� �� �� �� �� �

asgnop - An assignment operator (=, +=, etc.).
assoc-array - An associative (original-style) array.

assoc-elem-list - A space- or comma-separated list of associative array ele-
ments.

identifier - A variable.
identifier-list - A space- or comma-separated list of identifiers.

pattern - An alphanumeric string possibly containing the
metacharacters ? or * .

pattern-list-opt - An optional space-separated list of patterns.
expression-list - A comma-separated list of expressions.

expr-opt - An optional expression.
[;] - A semicolon or a newline. (A semicolon after a statement

is optional if the statement is followed by a newline.)

Note, that in the following list, the entry
expression in assoc-array

is included in the rules of what constitutes an expression. This is a special expression
that evaluates to nonzero (or true) if assoc-array[expr] is an existing element of
the array, and zero (or false) otherwise. For a two-dimensional associative array,

expr
1
in assoc-array[expr

2
]

is nonzero if assoc-array[expr
2
][expr

1
] is an element of the array.

64 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

These are the grammar rules:

expression:
lvalue
numeric-constant
string-constant
(expression)

function (expression-list)
− expression
! expression
˜ expression
++ lvalue
−− lvalue
lvalue ++

lvalue −−

expression ? expression : expression
expression binop expression
expression in assoc-array
lvalue asgnop expression
expression , expression
expression expression

lvalue:
identifier
identifier [expression]

identifier [expression] [expression]

binop:
∗ / %

+ −

>> <<

> < <= >=

== !=

&

ˆ

|

&&

||

asgnop:
= += −= ∗= /= %= >>= <<= &= ˆ= |=

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 65

data-array-type
string

byte

ubyte

short

ushort

long

ulong

float

double

data-array-declaration:
array identifier[expression]
data-array-type array identifier[expression]
array identifier[expression][expression]
data-array-type array identifier[expression][expression]

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

statement:
compound-statement
expression [;]
if (expression) statement
if (expression) statement else statement
while (expression) statement
for (expr-opt ; expr-opt ; expr-opt) statement
for (identifier in assoc-array) statement
break [;]

continue [;]

exit [;]

history expr-opt [;]

lscmd pattern-list-opt [;]

print expression-list [;]

global identifier-list [;]

constant identifier expression [;]

unglobal identifier-list [;]

delete assoc-elem-list [;]

66 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

local identifier-list [;]

syms pattern-list-opt [;]

data-array-declaration [;]

shared data-array-declaration [;]

def identifier string-constant [;]

rdef identifier expression [;]

undef identifier-list [;]

prdef pattern-list-opt [;]

lsdef pattern-list-opt [;]

memstat [;]

savstate [;]

reconfig [;]

getcounts [;]

move_all [;]

move_cnt [;]

sync [;]

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 67

Built-In Functions and Commands
These built-in functions and commands are described in the following sections.

UTILITY FUNCTIONS AND COMMANDS
System Functions Miscellaneous
chdir() time() gethelp() file_info() sleep() calc() lscmd savstate
unix() date() getenv() whatis() spec_par() history memstat sock_io()

KEYBOARD AND FILE INPUT, SCREEN AND FILE OUTPUT
Controlling Reading From Keyboard Text Binary
Output Files Files Input Output Input/Output

open() on() getline() input() print fprintf() fmt_read()
close() off() dofile() yesno() printf() tty_cntl() fmt_write()

qdofile() getval() eprint tty_move() fmt_close()
eprintf() tty_fmt()

VARIABLES
global constant delete syms
unglobal local array

MACROS
def prdef undef
rdef lsdef cdef()

HARDWARE FUNCTIONS AND COMMANDS

MCA Images CAMAC GPIB SERIAL POR T I/O VME
mca_sel() image_par() ca_get() gpib_get() ser_get() port_get() vme_get()
mca_par() image_get() ca_put() gpib_put() ser_put() port_getw() vme_put()
mca_get() image_put() ca_fna() gpib_poll() ser_par() port_put() vme_get32()
mca_put() ca_cntl() gpib_cntl() port_putw() vme_put32()
mca_spar() vme_move()
mca_sget()
mca_sput()

Misc Counting Moving and Motors
reconfig mcount() cnt_mne() move_all motor_mne() read_motors()
set_sim() tcount() cnt_name() move_cnt motor_name() dial() user()
wait() getcounts cnt_num() sync motor_num() chg_dial() chg_offset()
stop() counter_par() motor_par() get_lim() set_lim()

DA T A HANDLING AND PLOTTING FUNCTIONS
array_dump() array_op() data_grp() data_dump() data_bop() plot_cntl()
array_read() array_fit() data_info() data_read() data_uop() plot_move()
array_pipe() data_nput() data_pipe() data_anal() plot_range()
array_plot() data_get() data_plot() data_fit()

data_put()

STRING AND NUMBER FUNCTIONS
Math Functions Str ing Conversion

exp() log() sin() cos() tan() index() length() asc() deg()
exp10() log10() asin() acos() atan() split() sprintf() bcd() rad()
srand() pow() atan2() substr() sscanf() dcb()
rand() sqrt() fabs() int()

68 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Utility Functions and Commands

All functions return a number or string value that may be used in an expression.
The return values of some functions are only of use in conditional expressions, so
their return values are given as true or false. The corresponding number values are
1 and 0, respectively.

System Functions

chdir() — Changes spec’s current working directory to to the user’s home directory
as obtained from the user’s environment variable HOME. Returns true or
false according to whether the command was successful or not. The value of
the built-in string variable CWD is updated to the current working directory.

chdir(directory) — As above, but changes to the directory directory , which must
be a string constant or expression.

unix() — Spawns an interactive subshell using the program obtained from the user’s
environment variable SHELL (or shell). Uses /bin/sh if the environment
variable is not set. Returns the integer exit status of the shell.

unix(command) — As above, but uses /bin/sh to execute the one-line command
command , which must be a string constant or expression. Returns the integer
exit status of the command.

unix(command, str [, len]) — As above, but the argument str is the name of a
variable in which to place the string output from the command in the first
argument. The maximum length of the string is 4096 bytes (including a null
byte). The optional third argument can be used to specify a larger size.

time() — Returns the current epoch in seconds. The UNIX epoch is the number of
seconds from January 1, 1970, 00:00:00 GMT. The value returned includes a
fractional part with the resolution dependent on the host platform. Millisec-
ond resolution is standard, although on 80X86 systems only hundredth of a
second resolution is returned.

date() — Returns a string containing the current date as
Thu Jul 23 21:12:39 EDT 1992 .

date(seconds) — As above, but the returned string represents the epoch given by
seconds . See time() above.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 69

Miscellaneous

gethelp(topic) — Formats and displays the help file with the name topic to fit the
current screen size (as defined by the built-in variables ROWS and COLS). The
argument topic is a string constant or expression. If topic is a path name
containing the / character, that is the path name used for locating the file.
Otherwise, the file must be in the subdirectory help of spec’s auxiliary file
directory, given by the global variable SPECD . The function returns nonzero if
the file could not be opened.

spec will also read a file named SPECD/help/.links that contains a list of help
topics and file names. If a file corresponding to topic is listed in .links, that
file will be displayed.

Normally, the help file is displayed one screenful at a time. At the end of each
page, the user may type <space> , <return> , y or Y to see the next page, b to
go back a page or anything else to return to the spec prompt.

If the variable PAGER is set, the command therein is executed with the format-
ted help file as input. Typically, PAGER is set to a pagination utility such as the
more or less programs.

The help file contents are only written to the screen or display window and not
to any other turned on output files or devices.

The syntax recognized by spec’s built-in formatting uses the conventions of
the traditional UNIX text formatters (nroff, troff, ditroff, etc.), although only a
small subset of the formatting directives are supported. Those are described
below.

The spec distribution includes utilities for preparing both PostScript and
HTML (hyper text mark-up language) versions of the help files using either
the standard ditroff or the GNU groff packages.

Input text that has a dot on the first line is a formatting command. Unrecog-
nized formatting commands are ignored. A command such as .if t ... can
be used to insert commands to be executed only when the help files are being
printed with troff, etc., as the .if is not recognized by spec.

The following commands are supported:
.\" — Begins a comment. The rest of the text on the line is ignored.
.bp — Begins a new page.
.BP — Same as above.
.ne N — Indicates N lines are needed on the current page. If there isn’t

enough room on the current page, a new page is started.

70 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

.sp N — spaces N lines. Without an argument, one line is skipped. The argu-
ment may contain a decimal point and a unit indicator for the benefit of
nroff / troff, although with spec, only the integer part of the argument is
used.

.ta N — Start words every N letters, somewhat like using tabs.

.br — Causes a line break. The current line is finished and a new line is
started. Useful for forcing a newline in fill mode.

.fi — Switch to fill mode. Words are collected from the input until a full line
of output is available.

.nf — Switch to no-fill mode. Each newline in the input causes a newline in
the output.

.TH name category date SCCS_info — Should be on the first line of a help file.
The arguments are used in the page header (and footer, when printed)
and are, respectively, the name of the help file, the category (such as
macro, function, reference, etc.), the date the file was last revised and
the source-code control information.

.SH subhead ... — Does a subhead. There can’t be more than six arguments,
although you can use double quotes to put more than one word in an
argument. Subheads are placed all the way to the left of the page.

.HP N — Starts a hanging paragraph. The optional argument N specifies the
indent level. The default is 0.

.hp N — Can be used within a .HP block to increase or decrease the indent.
The optional argument N specifies the indent level. This command will
skip a line.

.PP — Starts a paragraph.

.LP — Same as above.

.(L F N I — Starts a no-fill block. The optional argument F indicates the font
to use and may be R , I , C , B or O . (See below for a description of the
font code letters.) The optional argument N is the number of lines
needed. If there is not enough room to print that many lines on the cur-
rent page, a new page will be started. The optional argument I is the
number of spaces of extra indentation to add.

.)L — Ends the no-fill block started by .(L .

.Q — Puts quotation marks around the arguments. If no arguments, puts quo-
tation marks around text on the next input line.

.NE — Only relevant for screen displays, this command indicates the screen
should not be erased before displaying the first page.

— Starts a comment if it is the first character on a line. The rest of the text
on the line is ignored. This comment notation is only for files that will
not be run off using nroff / troff.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 71

.BL — Begin a list of items.

.EL — Ends a list of items.

.LI item — Adds item to a list of items. For HTML documents, one list item
appears per line of output. For non-HTML documents, list items are
separated by tabs, and will fill the row according to the current tab
stops.

.DL + or .DL − — For HTML output, indicates the start or end of a definition
block.

.DD text — For HTML output, indicates the start of a definition. For the
other formats, the optional argument is simply copied verbatim.

.HR text [C [URL]]) — For HTML output, creates a hypertext link. If one
or two arguments are present, names the link . If the second argument
is C , outputs text in Courier font. If the third argument is present,
uses that as the URL link. For non-HTML formats, the text is copied
verbatim in the indicated font.

The help files use the following fonts for the purposes indicated. In the printed
documentation, the New Century Schoolbook typeface is used for the Roman,
italic and bold fonts. When used with spec and C-PLOT, the directives to
switch to bold, italic or one of the Courier typefaces result in highlighted text
on a video terminal.� ��� ��� � � � �	��� ��������� �����	� ��
 ����� � �
Italic � � � �	��� ��� for file and path names, including system commands, along

with book titles, etc.
Bold ��
 � �	��� ��� for section heads. Occasionally used for emphasis. Some-

times used to display arguments to system commands.
Courier ��� � �	��� ��� to represent literal text that might be output by the com-

puter program or might be typed by a user at the keyboard.
Courier Bold ����
 � ��� � ��� � ��������
�
�	 used to distinguish text a user types from

text output by the computer.
Courier Oblique � � � �	��� ��� to represent variable computer text, such as

the argument to a function.
“Quoted T��� ��� ��� � ��� ��� really a font, but used to place double quotes around a

bit of text.

All the fonts, except Roman, display as highlighted text on the video terminal.

The formatting commands:
.B .C .I .O

put their arguments in the associated font. If there are no arguments to the
above commands, the next line of input is put in that font.

72 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

The formatting commands:
.RB .BR .IR .CR .OR .CB
.RI .BI .IB .CI .OC
.RC .IC .CO
.RO

place the first argument in the first font, the second argument in the second
font and append an optional third argument in the regular text font, except for
.CB , which uses Courier Bold and Roman for the two fonts. The space charac-
ters between the arguments are removed. Use double quotes to include space
characters within arguments. A space character is added after the last argu-
ment. The formatting commands:

.rb .ir

.ri .ci .oc

.rc .ic .co

.ro

work as above, except a space characters is not appended after the last argu-
ment.

The @ symbol is used in the help file sources to represent literal double quote
characters, which makes it easier to insert literal double quote characters into
formatting command arguments. To enter a literal @ use both a backslash and
the troff .tr directive, as in

.tr @@
a literal \@ appears
.tr @"

The following special character sequences are recognized:

\" A double quote
\& A zero-width space
\0 A digit-width space
\| A sixth-em space (no space on screen)
\(** An asterisk (∗)
\(em A long dash (—)
\(hy A hyphen (-)
\(mu The multiplication sign (×)
\(space) An unpaddable space
*(CP The string C-PLOT
*(SP The string spec
*(UN The string UNIX
\- A m� ��� � � ��� � � � �

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 73

*- A long dash (—)
\@ An @ sign
\\ A backslash
\e A backslash
\f1 Switch to font R
\fC Switch to font C
\fP Switch to previous font
\f*(#B Switch to font B
\f*(#C Switch to font C
\f*(#I Switch to font I
\f*(#O Switch to font O

getenv(string) — Returns the value of the environment variable represented by the
string string . If the environment variable is unset, the null string is
returned. Environment variables are exported to spec by the invoking shell
program.

file_info(filename [, cmd]) — Returns information on the file or device named
filename . With a single filename argument, file_info() returns true if the
file or device exists. If the argument filename is the string "?" , the possible
values for cmd are listed. If filename is the string "." , spec uses the informa-
tion from the last stat() system call made using the previous argument for
filename , avoiding the overhead associated with an additional system call.

Possible values for cmd and the information returned follow. Note that the first
set of commands parallel the contents of the data structure returned by the
stat() system call, while the second set of commands mimic the arguments to
the test utility available in the shell.
"dev" — The device number on which filename resides.
"ino" — The inode number of filename .
"mode" — A number coding the access modes and file attributes.
"nlink" — The number of hard links for filename .
"uid" — The user id of the owner.
"gid" — The group id of the owner.
"rdev" — The device ID if filename is a block or character device.
"size" — The size in bytes of filename .
"atime" — The time when filename ’s data was last accessed.
"mtime" — The time when filenames ’s data was last modified.
"ctime" — The time when filenames ’s attributes were last modified.
"isreg" or "−f" — Returns true if filename is a regular file.
"isdir" or "−d" — Returns true if filename is a directory.

74 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

"ischr" or "−c" — Returns true if filename is a character device.
"isblk" or "−b" — Returns true if filename is a block device.
"islnk" or "−h or "−L" — Returns true if filename is a symbolic link.
"isfifo" or "−p" — Returns true if filename is a named pipe (sometimes

called a fifo).
"issock" or "−S" — Returns true if filename is a socket.
"-e" — Returns true if filename exists.
"-s" — Returns true if the size of filename is greater than zero.
"-r" — Returns true if filename is readable.
"-w" — Returns true if filename is writable.
"-x" — Returns true if filename is executable.
"-o" — Returns true if filename is owned by you.
"-G" — Returns true if filename is owned by your group.
"-u" — Returns true if filename is setuid mode.
"-g" — Returns true if filename is setguid mode.
"-k" — Returns true if filename has its sticky bit set.

Finally, the usage file_info(pid, "alive") will return true if the process
associated with the process ID pid exists.

whatis(string) — Returns a number that encodes what the identifier in string rep-
resents. The return value is a two-word (32-bit) integer, with the low word
containing a code for the type of object and the high word containing more
information for certain objects.

High Word Low Word Meaning
0 0 Not a command, macro or keyword.
0 1 Command or keyword.

Length 2 Macro name (length is in bytes).
0x0010 4 Number-valued symbol.
0x0020 4 String-valued symbol.
0x0040 4 Constant-valued symbol.
0x0100 4 Associative array name.
0x0200 4 Built-in symbol.
0x0400 4 Global symbol.
0x0800 4 Unset symbol.
0x2000 4 Immutable symbol.
0x4000 4 Local symbol.
0x8000 4 Associative array element.
0x0001 4 A data array or data array element.

Most type-4 symbols have more than one of the high-word bits set.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 75

The following code uses the whatis() function to determine whether or not a
value has been assigned to the PRINTER variable:

3.FOURC> if ((whatis("PRINTER")>>16)&0x0800) {
4.more> printf("Warning: No open printer.\n")
5.more> open(PRINTER = "/dev/null")
6.more> }

7.FOURC>

whatis(string, 1) — With two arguments, returns a printable string explaining in
words what kind of thing the thing named in string is to spec.

sleep(t) — Suspends execution for a minimum of t seconds, where t may be non-
integral. Actual sleep times may vary depending on other activity on the sys-
tem and the resolution of the system clock. Returns true. Can be interrupted
with ˆC . Fractional-second sleeps are available on all currently supported sys-
tems, although on on the System V/386 UNIX systems, such sleeps are avail-
able only if the special nap driver has been installed.

spec_par(par [, value]) — Sets internal parameters. Typing spec_par("?") lists
the available parameters. The currently available parameters are:
"auto_file_close" — The auto-file-close option is available to automatically

close output files that haven’t been accessed for some interval of time.
The parameter units are hours, and the parameter can have nonintegral
values. When the auto-close option is enabled, each time an on() ,
off() , open() , close() or fprintf() function is called, spec will
check its list of opened output files. Any files which have not been writ-
ten to for the length of time given by value hours will be closed.
Enabling this option can help prevent errors when your macros or com-
mands do not close files when appropriate, resulting in spec running
out of resources to open additional files.
As files are opened automatically when sent output, auto-close mode
operates transparently for the most part. However, if you change to a
different working directory between the time the file is first opened and
subsequently automatically closed, and if the file is not opened by an
absolute path name, the next time you refer to the file, spec will reopen
it using a relative path based on the current directory.
If value is zero, the mode is disabled. By default, the mode is initially
disabled.

"auto_hdw_poll" — When automatic hardware polling is turned on, spec will
automatically poll busy motor controllers, timers and acquisition devices
to determine when they are finished. For interrupt-driven devices (cer-
tain motor controllers and timers), this mode is irrelevant. For some

76 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

polled devices, spec needs to perform an action, such as starting a
motor backlash move, when the device is finished with its current busi-
ness. Without automatic hardware polling, a call to the wait() function
is necessary. The default is for this mode to be on. A reason to turn it
off may be to reduce the amount of debugging output during hardware
debugging.

"check_file_names" — The check-file-names option can prevent you from (acci-
dentally) creating files with names containing nonstandard characters.
When enabled, if a file name passed to the on() , open() or fprintf()
functions contains any of the characters ()[]{}|$’‘*?;!&<>" , the
space character, any control characters or any characters with the
eighth bit set, and the file doesn’t already exist, spec will print an error
message and reset to command level. By default, this mode is on.

"elog_timestamp" — The time interval for the optional time stamps for the
elog error file capability is set using this option. The units of the
"elog_timestamp" parameter are minutes. The default value is five
minutes. Note, time stamps are only added before a command or error
message is logged, so that the interval between time stamps can be
greater than that specified if no commands are being typed or errors
generated.

"flush_interval" — The flush-interval parameter controls how often spec
flushes output to the hard disk or other output device. Traditionally,
spec flushed output after each print command. However, as some users
report that this frequent flushing introduces considerable delays when
the output device is to an NFS-mounted file system, the flushing inter-
val can now be controlled. The "flush_interval" parameter specifies
how many seconds to allow between output buffer flushing. The default
value is 0.5 seconds. If the interval is set to zero, the traditional fre-
quent-flushing behavior will be restored. Output to the screen is still
flushed immediately. Output is also flushed each time the main spec
prompt is issued.

"HKL_rounding" — Traditionally, spec rounded values for H , K , and L (and
other geometry values derived from motor positions) to five significant
digits for configurations using reciprocal space calculations. As of
release 4.03.01, the rounding is now turned off by default. It can be
turned on using the command spec_par("HKL_rounding", 1e5) where
the argument indicates the magnitude of the rounding, i.e., one part in
1e5, for example. Note, values with an absolute value less than 1e-10
are still rounded to zero whether or not the optional rounding is turned
on.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 77

"hdw_poll_interval" — When the wait() function is called to wait for polled
motors, timers or other acquisition devices to finish, spec sleeps for a
small interval between each check of the hardware. Use this
spec_par() option to change that interval. The units of the parameter
are milliseconds, and the default sleep time is 10msec. A value of zero is
allowed, though not recommended if the computer is being used for any-
thing else.

"keep_going" — Normally, when taking commands from a command file, spec
resets to command level and the main interactive prompt when there
are syntax errors in the file, certain floating point exceptions, references
to unconfigured hardware, hardware access errors, along with a number
of other errors. When the "keep_going" option is set, spec will keep
reading and executing commands from a command file no matter what
errors occur. When there is an error, the next line from the current com-
mand file will be read. Note, depending on where the error is in a file,
reading subsequent lines may generate more errors, particularly if the
error occurs inside a statement block.

"modify_step_size" — Normally, spec doesn’t allow users to modify the motor
step-size parameter with the motor_par() function, as the consequences
are generally undesirable. However, in the rare circumstance that it is
necessary, this parameter allows you to enable such modifications.

"parse_units" — When parsing of units is turned on, numbers typed as input
to spec’s parser with one of the following suffixes appended will auto-
matically be multiplied by the corresponding factor.

1r 57.2958 radian
1mr 0.0572958 milliradian
1d 1 degree
1md 0.001 millidegree
1mm 1 millimeter
1um 0.001 micrometer
1m 0.0166667 minute
1s 0.000277778 second

Note, however, suffixes on numbers converted from strings or entered
using the getval() function are not parsed. The only known use for
unit-suffix parsing is with the user-contributed macros in the file
macros/units.mac. These macros require that unit suffixes be supplied
for all motor position arguments in the standard spec macros. The
default is for this mode to be off.

78 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

"show_prdef_files" — When this mode is on, the source file for each macro
definition is displayed with the prdef command. The default is for this
mode to be on.

"specwiz" — Allows spec administrators to gain access to motors locked out in
the config file to ordinary users. This feature allows the administrator
to position the motors without having first to go into the configuration
editor to change access modes. Entering spec_par("specwiz", 1)
causes spec to prompt for the “Wizard’s password”. If entered correctly,
the characters _WIZ are appended to the spec prompt to remind the
administrator of the special powers, and motors configured with pro-
tected status can be moved. Entering spec_par("specwiz", 0) dis-
ables the special mode.

spec looks for the encrypted password belonging to the spec_wiz (or
specwiz) user in the files SPECD/passwd, /etc/shadow, and
/etc/passwd in turn. If a shadow password file is used, ordinary users
won’t be able to read it, and the normal password file won’t contain the
encrypted password.

The spec distribution includes a wiz_passwd utility (as of release
4.03.07) the can be used to create a passwd file in the spec auxiliary file
directory that contains just the entry for the spec_wiz user. The
SPECD/passwd file should probably be owned and writable only by root
or the spec administrator.

"use_sem_undo" — This flag relates to whether the SEM_UNDO flag is set when
semaphores are used. It exists to get around a memory leak bug
observed with some releases of the Solaris 2 operating system. The flag
should be ignored unless you are instructed otherwise by CSS.

calc(i) — Calls a user-added function having code i . Codes are assigned in the dis-
tribution source file u_hook.c. Returns a user-supplied value or zero if there is
no user-supplied value.

calc(i, x) — As above, but passes the argument x to the user-supplied function.

The geometry calculations that transform motor positions to reciprocal space
coordinates and vice versa are implemented using calls to calc() . A descrip-
tion of the particular calls implemented for the four-circle diffractometer are in
the Four-Circle Reference. See page 195 in the Administrator ’s Guide for infor-
mation on how to include other user-added functions in the program.

history — This command lists the 1000 most recent commands typed at the key-
board. See the description of the command-recall (history) feature on page 50.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 79

history N — As above, but only prints the N most recent commands. If N is negative,
the commands are printed in reverse order.

lscmd — This command lists all the built-in commands, functions and keywords.

lscmd pattern ... — As above, except only names matching pattern are listed.

memstat — Shows the current memory usage.

savstate — Writes the current state to the state file.

The state file contains the variables, macro-file bitmap, output file names and
command history unique to each user, terminal and diffractometer. The state
file preserves the current situation when the user leaves the program, so that
the same situation can be restored when the user later returns to the program.

spec can be invoked with a ��� user flag and a ��� tty flag. These flags instruct
the program to initialize the current user’s state from the files associated with
the other user and/or terminal. Subsequent savstate commands access the
user ’s natural state file.

The savstate command does not save the state files until the entire parsed
mini-program in which the command occurs has been run.

Note, as of release 4.05.01, a new show_state utility is included in the spec dis-
tribution. This utility can display the contents of spec state files. Type
show_state − to see the utility’s usage message.

sock_io(host:port, cmd [, arg]) — Connects and communicates with sockets cre-
ated by other processes on the local or a remote host. The host can be speci-
fied by a symbolic name or by an IP address. The string cmd is one of the fol-
lowing:
"?" — Lists the command options available.
"show" — Lists the current open sockets and their status.
"connect" — Opens the socket to the specified host and port. Returns true for

success and false for failure.
"listen" — Sets up a socket for listening, allowing another instance of spec or

some other program to make a connection.
"close" — Closes the socket associated with the specified host and port.
"send" — Sends the string arg to the specified socket, opening it if not already

connected.
"read" — Reads from the specified socket, opening it if not already connected.

Currently, the message to be read can be no longer than 1,024 bytes.
With no argument, reads until a newline or until the timeout expires.
An optional string argument can specify an end-of-string (EOS) delim-
iter, in which case the socket will be read until characters matching the

80 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

EOS sequence are read or until the timeout expires. Trailing newlines
and carriage returns will be removed from the returned string. Also, if
the optional argument is a number, it specifies the number of bytes to be
read. That number of bytes (or less, if the timeout expires) will be read
and returned.

"timeout" — With no argument, returns the current read-timeout value in sec-
onds. Otherwise, sets the read timeout to arg . A negative timeout
value causes the socket read to block until it is satisfied. The default
timeout value is five seconds.

Note, the "connect" command doesn’t generally need to be used, as the con-
nection will be made if needed with the other commands. However, the return
value from the "connect" command may be used to test if a socket can be cre-
ated. A connection remains open until the "close" argument is used. Simul-
taneous connections to multiple ports are allowed.

The following example connects to the echo service on port 7 of the local host.
7.FOURC> sock_io("localhost:7", "send", "This is a test.\n")

8.FOURC> print sock_io("localhost:7", "read")
This is a test.

9.FOURC>

Input and Output
Controlling Output Files

With this group of functions, the names "tty" and "/dev/tty", when used for
filename , are special and refers to the user’s terminal. The names "null" and
"/dev/null" are also special and when used as as an output device, result in no out-
put. The name "pipe" is also special, but only when spec is invoked with the ��

flag, where it refers to the special data stream from spec to a front-end program.

open() — Lists all open files, including their directories, and indicates which files are
currently turned on for output. Returns zero.

open(filename) — Makes filename , which is a string constant or expression, avail-
able for output. Files are opened to append.

� ��� ���
� � � ���
� ����� � ���
� � � � � ��� ��� �����
file can not be opened or if there are too many open files. If the spec_par()
"check_file_name" option is on, and if filename contains any of the charac-
ters ()[]{}|$’‘*?;!&<>" , spec will print an error message and reset to com-
mand level, unless the file already exists.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 81

close(filename) — Closes filename and removes it from the table of files available
for output.

� ��� ���
� � � ��� � ����� � ��� �
� � � � � � ��� ����� �
���� � � ��� t open. Files should be
closed before modifying them with editors.

on() — Lists all open files and indicates which ones are currently turned on for out-
put.

on(filename) — Turns on filename for output. All messages, except for some error
and debugging messages, but including all print and printf() output, are
sent to all turned-on devices. If filename has not been made available for out-
put with the open() function, it will be opened.

� ��� ���
� � � ���
� ����� � � �
�
� � � � � � ���
the file can’t be opened or if there are too many open files.

off(filename) — Turns off output to filename , but keeps it in the list of files avail-
able for output. If this was the last turned-on file or device, tty is turned back
on automatically. R�� � � �
 � � � �� �
 ���� �� � � ���
� � � � � ��� �� ������� �
� ��� � � ���t open.

spec remembers the directory the files are in when they are first opened. If the user
changes spec’s current directory, open files may be referenced either by the name
with which the files were opened or by the correct path name relative to the current
directory. If an open file disappears from the file system (for example, if a user
removes the file using a subshell), the next time the file is written to, spec prints a
warning message and creates a new instance of the file.

Files should be closed before attempting to edit them outside of spec.

Errors during parsing or execution of commands, or typing a ˆC turns off all open
files except log files (see next section).

Log Files

Special log files can be created for debugging or archiving purposes. A regular log file
is a file with a name beginning with the characters log or ending with the characters
.log . All output sent to any device is sent to a log file.

A special type of log file is a debugging log file. That is a file with a name that begins

82 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

with dlog or ends with .dlog . Debugging messages (generated when a value is
assigned to the built-in variable DEBUG) are only written to such a file, not to the
screen or any other file or device.

Another kind of log file is available (as of release 4.05.01) that records typed com-
mands, error messages and optional time stamps. The file is intended to be useful to
administrators trying to diagnose user problems. A file opened for output named
elog or that ends in .elog is such a file. Commands entered at the spec prompt are
logged prefixed by a #C . Error messages produced by the built-in C code, or gener-
ated by the eprint or eprintf() built-in keywords, are logged prefixed by a #E . If
time stamps are enabled (via the spec_par() "elog_timestamp" option), the UNIX
epoch and the corresponding date string are logged (at the time-stamp interval) pre-
fixed by a #T .

Reading From Files

The first function below is for reading strings from a file one line at a time. The sec-
ond and third functions cause spec to switch its source of command input from the
keyboard to the specified files.

getline(file [, arg]) — This function reads successive lines from the ASCII file
file each time it is called and returns the string so obtained, including the
trailing newline. If arg is the string "open" , the function returns zero if the
file can opened for reading. � � � ��� � � � � � � � � �
��� ��� ������� If arg is "close" , the
file is closed and zero is returned. If arg is zero, the first line of the file is
returned. If only the first argument is present, the next line of the file is read
and returned.

� � � � � ��� � ��������� �
�� ��� ��� � � �
��� ���
� �����
The previous file, if any, is closed and the new file is opened automatically
when the filename argument changes (at least in this preliminary implementa-
tion).

dofile(file [, line_num|search_pattern]) — Queues the file file for reading com-
mands. file must be a string constant or expression. Returns nonzero if the
file doesn’t exist or permit read access. As of release 4.05.01, an optional sec-
ond argument can specify a line number or a text pattern that will be used to
locate the point in the file to begin reading. If the argument is an integer, the
number specifies at which line to start reading the file. (Currently, only posi-
tive integers are allowed.) If the argument is anything else, it is considered a
search string, and text is read from the file starting at the first line containing
that search string. The metacharacters * , which matches any string, and ? ,
which matches any single character, are allowed in the search string. Initial
and trailing white space is ignored in the file.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 83

qdofile(file) — As above, but does not show the contents of the file on the screen as
the file is read.

Normally, most errors that occur while reading from a command file cause spec to
reset to the level of the main interactive prompt with any open command files then
closed. However, as of release 4.05.01, the spec_par() option "keep_going" is avail-
able to override that behavior. See spec_par() on page 78.

When a command file is opened within a statement block, the source of input isn’t
switched to the command file until all the commands in the statement block are exe-
cuted. Thus it isn’t possible to execute commands from a command file within a
statement block. Note, though, the getline() (on page 83) function is available to
scan strings from files.

When multiple command files are queued on a single command line, the input source
can only change after the current line is exhausted, as the following example demon-
strates:

9.FOURC> print "hi";dofile("file1");dofile("file2");print "bye"
hi
bye

FOURC.2> Reading "file2".
print "This is text from file2"
This is text from file2

FOURC.1> Reading "file1".
print "This is text from file1"
This is text from file1

10.FOURC>

Here file1 contains the single line print "This is text from file1" , and file2
contains print "This is text from file2" .

Keyboard Input

input() — Reads a line of input from the keyboard. Leading white space and the
trailing newline are removed and the string is returned. Returns the null
string "" if only white space was entered. Example:

84 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

10.FOURC> def change_it ’{
11.quot> local it
12.quot> printf("Change it? ");
13.quot> if ((it=input()) != "")
14.quot> change_mac(it)
15.quot> }’

16.FOURC>

input(prompt) — As above, but prompts with the string prompt . Examples:
16.FOURC> input("Hit return when ready ... ")
Hit return when ready ... <return>

17.FOURC>

input(n) — This function behaves differently depending on whether the input source
is the keyboard or a pipe from another program (where spec is invoked with
the −p fd pid option, with nonzero fd .)

In the usual case, if n is less than or equal to zero, the tty state is set to
“cbreak” mode and input echo is turned off. Then input() checks to see if the
user has typed a character and immediately returns a null string if nothing
has been typed. Otherwise, it returns a string containing the single (or first)
character the user typed. If n is less than zero, the cbreak, no-echo mode
remains in effect when input() returns. If n is greater than zero, the normal
tty state is restored (as it is also if there is an error, if the user types ˆC or if
the user enters the exit command). Also, no characters are read and the null
string is returned. The normal state is also restored before the next main
prompt is issued, whether due to an error, a ˆC , or through the normal flow of
the program.

On the other hand, when spec is invoked with the −p fd pid option, with
nonzero fd , input() reads nothing but does return the number of characters
available to be read. If n is nonzero, input() simply reads and returns a line
of text, as if it had been invoked with no argument.

yesno(val) — Reads a line of input from the keyboard. The function returns 1 if the
user answers with a string beginning with Y , y or 1 . The value of val is
returned if the user simply enters return. Otherwise the function returns
zero.

yesno(prompt, val) — As above, but prompts the user with the string prompt . The
characters " (YES)? " are appended to the prompt string if val is nonzero.
Otherwise the characters " (NO)? " are added.

getval(val) — Reads a line of input from the keyboard. If the user enters a value,
that value is returned. The value of val is returned if the user simply enters

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 85

return. The function works with both number and string values.

getval(prompt, val) — As above, but prompts the user with the string prompt . The
string is printed followed by the current value of val in parenthesis, a question
mark and a space. For example,

17.FOURC> DATAFILE = getval("Data file", DATAFILE)
Data file (pt100.133)? <return>

18.FOURC>

Text Output

print a [, b ...] — Prints the string value of each argument, adding a space
between each string. If the argument is an associative array, each element of
the array is printed in a list, as in:

18.FOURC> print mA
mA["0"] = 2
mA["1"] = 0
mA["2"] = 1
mA["3"] = 3

19.FOURC>

If the argument is a data array, the contents of the array are printed in a com-
pressed format, as in:

19.FOURC> array data[64][64]; data[0] = 1; data[1] = 2
20.FOURC> print data
{{1 <64 repeats>}, {2 <64 repeats>}, {0 <64 repeats>} <62 repeats>}

21.FOURC>

eprint a [, b ...] — As above, except that if an error-log file is open, the gener-
ated string will also be written to that file prefixed by the #E characters.

printf(format [, a ...]) — Does formatted printing on the turned-on output
devices. format contains the format specifications for any following argu-
ments. See the description of printf() in any C-language manual. Returns
true.

eprintf(format [, a ...]) — As above, except that if an error-log file is open, the
generated string will also be written to that file prefixed by the #E characters.

fprintf(file_name, format [, a ...]) — Does formatted printing on file_name .
All other devices (except log files) are turned off while the string is printed.
The specified file is opened, if necessary, and remains open until closed with
the close() function.

86 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

tty_cntl(cmd) — Sends terminal-specific escape sequences to the display. The
sequences are only written to the "tty" device and only if it is turned on for
output. The sequences are obtained from the system terminal-capability data
base using the value of the environmental variable TERM . The following values
for cmd are recognized:
"ho" — Move the cursor to the home position (upper left corner).
"cl" — Clear the screen.
"ce" — Clear to the end of the line.
"cd" — Clear from current position to the end of the screen.
"so" — Start text stand-out mode.
"se" — End text stand-out mode.
"md" — Start bold (intensified) mode.
"me" — End bold mode.
"us" — Start underline mode.
"ue" — End underline mode.
"mb" — Start blink mode. (Note, xterms don’t blink.)
"mh" — Start half-bright mode.
"mr" — Start reverse video mode.
"up" — Move cursor up one line.
"do" — Move cursor down one line.
"le" — Move cursor left one space.
"nd" — Move cursor right one space (nondestructive).
"resized?" — A special option that updates the ROWS and COLS variables in the

event the window size has changed and returns a nonzero value if the
window size has changed since the last call to tty_cntl("resized?") .

Returns true if cmd is recognized, otherwise returns false.

tty_move(x, y [, string]) — Moves the cursor to column x and row y of the dis-
play, where column 0, row 0 is the upper left corner of the screen. If the third
argument string is present, it is written as a label at the given position. The
sequences and string are only written to the "tty" device and only if it is
turned on for output. Special tty control sequences of the form \[xx] , where
xx is one of the codes listed for the tty_cntl() function above, can be used
with string . Negative x or y position the cursor relative to the left or bottom
edges of the screen, respectively. Relative moves are possible by adding ±1000
to x or y position arguments. Both coordinates must specify either relative or
absolute moves. If one coordinate specifies a relative move, the absolute move
in the other coordinate will be ignored. Please note, not all terminal types sup-
port relative moves. Returns true.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 87

tty_fmt(x, y, wid, string) — Writes the string string to the screen starting at col-
umn x and row y , where column 0, row 0 is the upper left corner of the screen.
The string is only written to the "tty" device and only if it is turned on for
output. If string is longer than the width given by wid , the string is split at
space characters such that no line is longer then wid . Newlines in the string
are retained, however. The function will truncate words that are wider than
wid and drop lines that would go off the bottom of the screen. Special tty con-
trol sequences of the form \[xx] , where xx is one of the codes listed for the
tty_cntl() function above, can be used with string . Negative x or y position
the cursor relative to the left or bottom edges of the screen, respectively. The
function returns the number of lines written.

Binar y Input/Output

The facility for binary file input and output allows users and sites to create arbitrary
binary file formats for writing and reading spec data arrays. C source code for a
number of formats is included in the spec distribution.

fmt_read(file, fmt, arr [, header [, flags]]) —

fmt_write(file, fmt, arr [, header [, flags]]) —

fmt_close(file, fmt) —

In these functions file is the name of the data file, fmt selects which format to use
and arr is the data array. The optional header argument is an associative array that
may containing identifying information to be saved with the binary values in the
data array. The optional flags argument is reserved for future enhancements.

88 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Commands For Var ia bles

global name ... — Declares name to be a global symbol. A global symbol retains its
value after each parsed program is executed. If name is used as an array
name, each element of the array is global. By appending empty square brack-
ets to name the type of the symbol can be forced to be an associative array,
which may be useful if name is to be used as an argument to a macro function
before its type has been established by usage.

unglobal name ... — Makes the global or constant symbol name no longer global.

constant name expression — Declares name to be a constant, global symbol having
the value given by expression . A constant symbol cannot be changed by
assignment.

local name ... — Allows reuse of a preexisting name and gives the new instance of
that name scope only within the statement block in which it is defined. The
name may be that of a macro, in which case the macro definition is unavailable
within the statement block. By appending empty square brackets to name the
type of the symbol can be forced to be an associative array, which may be use-
ful if name is to be used as an argument to a macro function before its type has
been established by usage.

delete assoc-array[elem] ... — Removes the element elem of the associative
array assoc-array .

[[extern] shared] [type] array var[cols] — Declares a one-dimensional data
array.

[[extern] shared] [type] array var[rows][cols] — Declares a two-dimensional
data array.

(Text forthcoming. See the on-line arrays help file in the meantime.)

syms [−v] [+|−BGLADNSIC] [pattern ...] — Lists spec’s current variables. Without
arguments, all the variables are listed, along with their memory consumption
and type. With the −v flag, the variables are listed along with their values in a
format that can be saved to a file and read back as commands. If arguments
are given as pattern , only symbols matching the arguments are printed.
Such arguments may contain the ? and * metacharacters.

In addition, the type of symbols listed can be controlled using the flags in the
following table where a − flag prevents symbols with the given attribute from
being listed and a + flag includes symbols with the given attribute in the list.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 89

B Built-In
G Global
L Local
A Associative array
D Data array
N Number type
S String type
I Immutable attribute
C Constant attribute

Commands For Macros
Built-In Commands

def name string — Defines a macro named name to be string . Each time name
occurs on input, it is replaced with string . The definition is made immedi-
ately, so the macro can be used later in the same statement block in which it is
defined and can be redefined within the same statement block.

Note that the macro definition is made regardless of any surrounding flow con-
trol statements, since the enclosing mini-program is not yet completely parsed
and is not executing.

rdef name expression — Defines a macro named name to be expression , which is
almost always a string constant. Each time name occurs on input, the value
expression is substituted. Unlike def , described above, the macro definition
is not made until all the encompassing statement blocks are parsed and the
resulting mini-program is executed. Consider the following example.

if (flag == 1)
rdef plot "onp;offt;lp_plot;ont;plot_res;offp"

else if (flag == 2)
rdef plot "splot;onp;offt;lp_plot;plot_res;ont;offp"

else if (flag == 3)
rdef plot "onp;plot_res;offp"

else
rdef plot ""

Clearly, it is necessary for the mini-program to be parsed and executed to
decide which is the appropriate definition to assign to the plot macro.

prdef — Displays all macro definitions. The displayed definitions are prepended
with def name ´ and terminated with ´ so if saved to a file, the definitions can
be read back. (See the standard macro savmac on page 132.)

90 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

prdef pattern ... — As above, except only macro names matching pattern are
listed, where pattern may contain the metacharacters ? or * .

lsdef — Lists the name and the number of characters in each macro definition.

lsdef pattern ... — As above, except only macro names matching pattern are
listed, where pattern may contain the metacharacters ? or * .

undef name ... — Removes the named macros, which can be ordinary macros,
macro functions or cdef() macros.

cdef("name", string ["key" [, flags]]) — Defines parts of chained macros. A
chained macro definition is maintained in pieces that can be selectively
included to form the complete macro definition. The argument name is the
name of the macro. The argument string contains a piece to add to the
macro.

The chained macro can have three parts: a beginning, a middle and an end.
Pieces included in each of the parts of the macros are sorted lexicographically
by the keys when putting together the macro definition. Pieces without a key
are placed in the middle in the order in which they were added, but after any
middle pieces that include a key.

The key argument allows a piece to be selectively replaced or deleted, and also
controls the order in which the piece is placed into the macro definition. The
flags argument controls whether the pieces are added to the beginning or to
the end of the macro, and also whether the pieces should be selectively
included in the definition depending on whether key is the mnemonic of a con-
figured motor or counter.

The bit meanings for flags are as follows:
� � � � � ���
�	������
 � ��� ����� ��	�� � � � ������� � � ��� ��� � �� � ��� � ���
�	������
 � ��� ����� ��	�� � � �
� ��� � ��� � ����� �������� � � � �

 ��� � ��� � � � � � � ����� � ���
 ���
� ��� � � � � ��� �
�� � ��� �

 ��� � ��� � � � ��� �
 ���
� ��� � � � � ��� �
�

If flag is the string "delete" , the piece associated with key is deleted from
the table. If the name is the null string, the piece associated with key is
deleted from all the chained macros. If key is the null string, the flags have
no effect.

The cdef() function will remove any existing macro defined using def or
rdef . However, the commands lsdef , prdef and undef will function with
chained macros.

When spec starts and when the reconfig command is run (or the config
macro is invoked), all the chained macros are adjusted for the currently

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 91

configured motors and counters.

cdef("?") — Lists all the pieces of all the chained macros.

cdef("name", "", "?") — Lists the pieces of the macro named name .

Built-In Macro Names

The following macro names are built-in to spec. They are run at the specified times
only if they have been given a definition.

begin_mac — If a macro by this name exists, it will be run after reading the hardware
configuration file and all the start-up command files, but before reading com-
mands from the keyboard.

end_mac — If a macro by this name exists, it will be run when spec exits from either
a ˆD or a quit command.

config_mac — If a macro by this name exists, it will be run after reading the configu-
ration file at start up and after the reconfig command is executed.

prompt_mac — If a macro by this name exists, it will always be run just before spec
issues the main, level-zero prompt. If an error occurs while running
prompt_mac , it will be automatically undefined.

cleanup, cleanup1 — If either or both exists, they will be run whenever an error is
encountered, the exit command is encountered, or a user types ˆC . The
cleanup macros is run first. After running the clean-up macros, spec gives
the standard prompt and waits for the next command from the keyboard.

cleanup_once — A clean-up macro (added in release 4.03.13) that is always deleted
before a new spec main prompt is issued. If defined, its definition will be
pushed on to the input stream whenever an error is encountered, the exit
command is encountered, or a user types ˆC .

cleanup_always — Like cleanup_once , but its definition is not removed except by an
explicit undef command.

Macro Arguments

Within ordinary macros (not macro functions), the symbols $1 , $2 , ... , are replaced
by the arguments with which the macro is invoked. Arguments are defined as
strings of characters separated by spaces. Also, quotes can be used to include more
than one space-separated string in a single argument. Use \" or \’ to pass literal
quotes. Arguments can be continued over more than one line by putting a backslash

92 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

at the end of the line.

Within a macro the following substitutions are also made:

$0 is replaced with the macro name,
$* is replaced with all the arguments,
$# is replaced with the number of arguments,
$$ is a literal $.

When a macro defined without arguments is invoked, only the macro name is
replaced with the definition. On the other hand, when a macro defined with argu-
ments is invoked, all characters on the input line up to a ; , a { or the end of the line
are eaten up, whether or not the macro uses them as arguments.

When numbered arguments are referred to in the macro definition, but are missing
when the macro is invoked, they are replaced with zeros. If $∗ is used in the defini-
tion and there are no arguments, no characters are substituted.

As of spec release 3.03.10, there is no limit on the length of macro definitions.
Macros can have a maximum of 25 arguments. The total combined size of all macro
definitions is currently limited to 491,520 characters.

Beware of unwanted side affects when referencing the same argument more than
once. For example, if i++ is an argument referenced more than once in a macro defi-
nition, the result is probably not what was desired.

Macro Functions

Macro functions (introduced in release 4) are a type of macro that can return values
and can be used as an operand in expressions. The macro definition can include func-
tion arguments, which then become available to the body of the macro function. For
example,

def factorial(n) ’{
if (n <= 1)

return(1);
return(n * factorial(n-1))

}’

The syntax of macro functions requires the macro name followed by a set of parenthe-
sis which can contain a comma-separated list of argument names. The arguments
names become local variables within the macro definition. The definition must be a
statement block, that is, the statements must be enclosed in curly brackets.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 93

Hardware Functions and Commands
MCA and Other Data Acquisition

mca_sel(n) — Selects which MCA-type device to use with subsequent mca_get() ,
mca_put() and mca_par() commands. The numbering of MCA-type devices is
set in the config file. Returns ��� ��� ����� �
��� � � � �
��� ����� ����� � � � n , otherwise
returns zero. It is not necessary to use mca_sel() if only one MCA-type device
is configured. The selected MCA-type device does not change when reading
the config file with the reconfig command.

mca_sel("?") — Lists the configured MCA devices, with the currently selected device
marked with an asterisk.

mca_par(par [, val]) — A device-dependent function to access various features and
parameters of the currently selected MCA-type device. The string par selects
an option. The argument val contains an optional numeric value. See the
help file for the particular device for implemented options and return values.

mca_get(grp, elem) or mca_get(array) — Gets data from the currently selected
MCA-type device, and transfers it to element elem of data group grp or to the
elements of the data array array . Generally returns the number of points
�
� � � ��� ��� ����� ������
 ���
� �

mca_put(grp, elem) or mca_put(array) — Sends data from data group grp , element
elem or from the data array array to the currently selected MCA-type device.� ��� ������

�	��
��� ��� � � ����� ��� � ����� ����
�������� � � �
��������� ��� ��� ����� ������
 ���
� �

mca_spar(sel par [, val]) — As mca_par() above, but selects which MCA device
with the sel argument.

mca_sget(sel grp, elem) or mca_sget(sel array) — As mca_get() above, but selects
which MCA device with the sel argument.

mca_sput(sel grp, elem) or mca_sput(sel array) — As mca_put() above, but selects
which MCA device with the sel argument.

CAMAC (IEEE-583) Hardware Functions

CAMAC functions are available if the appropriate hardware devices and software
drivers have been installed on the computer. The config file describes which CAMAC
hardware is installed. Refer to the Administrator ’s Guide for information on the sup-
ported CAMAC controllers and how to install the corresponding drivers.

CAMAC modules are programmed with FNA codes where F is a function code, N is
the slot number and A is a subaddress number. Slot numbers are assigned in the

94 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

config file. Built-in code for the specialized CAMAC devices used for controlling
motors, clocks and scalers is accessed through commands such as mcount() ,
tcount() and move_all . However, simple devices, such as input or output registers,
can be accessed directly by the user. These modules are also assigned slot numbers
in the config file. They are also given device numbers, starting at 0, that are used in
the following functions.

ca_get(device, address) — The CAMAC module having device number device , as
set in the config file, is read using F = 0 and A = address with the 24-bit value
so obtained returned. Resets to command level if not configured for device .

ca_put(x, device, address) — This function is similar to ca_get() above, except
the 24-bit value x is written using F = 16. The actual number written is
returned, which is the 24-bit integer representation of x . Resets to command
level if not configured for device .

ca_fna(f, n, a [, v]) — Sends the arbitrary FNA command to the module in slot
n . If the dataway command given by f is a write function, the 24-bit value to
be written is contained in v . If the dataway command given by f is a read
command, the function returns the 24-bit value obtained from the module.
The user should avoid issuing commands that would cause a LAM and should
certainly avoid issuing commands to slots that are being used for motor or
counter control by spec’s internal hardware code.

ca_cntl(cmd, [, arg]) — Performs the selected CAMAC crate command according
to the parameter cmd , as follows:
"Z" or "init" — performs a crate initialize (reset).
"C" or "clear" — performs a crate clear.
"inhibit" — set crate inhibit if arg is 1 and clears crate inhibit if arg is 0.

During normal operation, you should not need to issue these commands. You
should probably issue a reconfig after sending a crate initialize or clear.

GPIB (IEEE-488) Hardware Functions

GPIB functions are available if the appropriate hardware and software drivers have
been installed on the computer. Information in the config file describes the particular
GPIB hardware in use. Refer to the Administrator ’s Guide for information on the
supported GPIB controllers and how to install the corresponding drivers.

spec allows up to four GPIB controllers to be in use at once. The controller unit
numbers are set in the config file. For the functions below, there are two methods by
which the unit number can be specified. If no unit number is specified, the default,
unit 0, is used. The first method of addressing is of the form "unit:addr" where the

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 95

quotes are required. Alternatively, the unit number can be coded in the GPIB
address as unit × 100 + addr.

gpib_get(addr) — Returns a string from the GPIB device with address addr . The
device must terminate the string with either a newline (\n) or a carriage
return and a newline (\r\n). In either case, the terminator is removed before
the string is returned. At most, 8,192 characters can be read at a time. (That
limit is as of spec �
��
�� � � ��� � ��� � ��� � �����
���� ��� � � � � � � ���
��� �
��
�� � � ��� � ��� � ��� ��� �
255 since release 2.14.)

gpib_get(addr, n) — As above, but reads n bytes and does not look for or remove the
terminator.

gpib_get(addr, s) — As above, but tries to read up to the terminator given by the
first character of the string s , except for the special cases described below. The
terminator is removed.

gpib_get(addr, mode) — If mode is the string "byte" , reads and returns one
unsigned binary byte. The following modes read short or long integers and
work the same on both big-endian and little-endian platforms. If mode is the
string "int2" reads two binary bytes and returns the short integer so formed.
If mode is the string "int4" reads four binary bytes and returns the long inte-
ger so formed. By default, the incoming data is treated as big endian. If the
incoming data is little endian, use "int2_swap" or "int4_swap" .

gpib_put(addr, string) — Writes the string string to the device with GPIB address
addr . Returns the number of bytes written. The length of the string is not
limited, but null bytes cannot be sent.

gpib_poll(addr) — Returns the serial-poll status from the device with address addr .

gpib_cntl(addr, cmd) — Performs the selected GPIB command on the device with
address addr . The string cmd is one of the following:
"gtl" — Go to local.
"llo" — Local lockout.
"sdc" — Selected device clear.
"dcl" — Device clear (sent to all devices).
"get" — Group execute trigger (sent to addressed device).
"responsive" — This special command will return a nonzero value if the GPIB

controller (not device) associated with addr is present in spec’s configu-
ration file and responds to spec’s presence test.

Returns zero if command is sent successfully, O������� � � � � �
��� ��� � � ��� �

96 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

RS-232 Serial Interfaces

Serial functions are available on all the systems spec supports. The device nodes are
selected in the config file, where they are assigned spec device numbers starting
from zero that are used in the functions below.

ser_get(dev_num) — Reads a string of characters, up to and including a newline,
from serial device dev_num and returns the string so read. The routine will not
return until the read is satisfied. Use ser_get(dev_num, 0) to read up to a
newline with a timeout.

ser_get(dev_num, n) — If n is greater than 0, this routine reads n bytes from the
serial device dev_num and returns the string so obtained. If n is zero, the rou-
tine reads characters up to and including a newline. If the read is not satisfied
within two seconds, the routine returns the null string.

ser_get(dev_num, mode) — If mode is the string "byte" , reads and returns one
unsigned binary byte. The following modes read short or long integers and
work the same on both big-endian and little-endian platforms. If mode is the
string "int2" reads two binary bytes and returns the short integer so formed.
If mode is the string "int4" reads four binary bytes and returns the long inte-
ger so formed. By default, the incoming data is treated as big endian. If the
incoming data is little endian, use "int2_swap" or "int4_swap" . If the device
returns less than the required number of bytes, the characters so read are dis-
carded, and ser_get() returns the null string. The tty mode for the device
needs to be selected as raw in the config file for this command to work properly.

ser_put(dev_num, string) — Writes the string string to the serial device having
device number dev_num , as set in the config file . Returns the number of bytes
written.

spec uses the standard tty(4) driver interface on the UNIX systems. Serial line char-
acteristics are set according to the device modes set in the config file. Available
modes are either raw or cooked, with cooked mode also having noflow, igncr (no-op on
non-System V) and evenp or oddp options. The baud rate for the serial line is also
taken from the config file.

ser_par(dev_num, par [, val]) — Sets parameters for the serial device dev_num .
Values for par include:
"timeout" — Sets or returns the current value for the timeout for reads from

cooked serial lines. The units are seconds. If val is zero, timeouts are
disabled. If val is less than zero, the default timeout of two seconds is
set.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 97

PC Por t I/O

The port I/O functions allow arbitrary access to I/O ports on a PC computer, and
therefore, should be used with caution. To lesson the chance of writing data to a port
that might damage the computer or corrupt data, valid addresses for the following
functions must be explicitly assigned in the config file.

port_get(addr) — Reads one byte from the PC I/O port with the address addr .
Resets to command level if the port has not been selected in the config file.
Otherwise, returns the byte read.

port_getw(addr) — As above, but reads and returns a two-byte value.

port_put(addr, byte) — Writes the byte byte to the PC I/O port with the address
addr . Resets to command level if the port has not been selected for writing in
the config file. Otherwise, returns zero.

port_putw(addr, word) — As above, but writes the two-byte value word to the I/O
port.

VME Hardware Functions

The type of data access and/or VME address modifier for the following functions can
be selected with the optional argument dmode as follows (if more than one option is
needed, make a comma-separated list in the single string argument):

"D8" — byte access
"D16" — short-word access
"D32" — long-word access, but only available with vme_get32() and

vme_put32() .
"DPRT" — use the address modifier appropriate for dual-port memory access,

on adapters that support it.
"amod=0xXX" — specify the hexadecimal value for the address modifier.

The default mode for the A16 access functions vme_get() and vme_put() is D8. The
default mode for the A32 access functions vme_get32() and vme_put32() is D32.
Not all VME adapters supported by spec support A32 access. There are currently no
functions for A24 access.

vme_get(addr [, dmode]) — Returns the data at addr in the 64K A16 address space.

vme_put(addr, data [, dmode]) — Writes data to addr in the 64K A16 address
space.

vme_get32(addr [, dmode]) — Returns the data at addr in the A32 address space.

98 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

vme_put32(addr, data [, dmode]) — Writes data to addr in the A32 address space.

vme_move(from, to [cnt [, dmode]]) — Copies data between a spec data array
and VME A32 address space. One of the from and to arguments must be the
name of a spec data array while the other must be a VME address. If the
optional argument cnt is present, it designates how many data items (not
bytes) to copy. If missing or zero, the number of elements in the array is
copied.

Miscellaneous

reconfig — Reconfigures the hardware. This command obtains any modified config-
uration information, including hardware devices and types, CAMAC slot
assignments and motor parameters and settings, from the config and settings
files. The sequence of events is as follows:

First, spec waits for all asynchronous activity (moving and counting) to finish.
It then does a sync of the motor controller registers, comparing them with the
internal program positions. Next, all open devices are closed. The config file is
then read to obtain the configuration information, and the program opens and
possibly does hardware presence tests on the selected devices. Finally, the
internal program motor positions are updated from the settings file and then
resynchronized with the motor hardware.

set_sim(how) — If how is 0, simulate mode is turned off. If how is 1 (or positive), sim-
ulate mode is turned on. In either case the program waits for moving and
counting to finish before changing the mode, and the function returns the pre-
vious mode (0 or 1). If how � ����� ����� ��� ����� � � � � ����� � ����� � ����� �
��� ��� � � ����� � ��� �
�����
value of simulation mode without changing it. Whenever simulation mode is
turned off, the motor settings file is reread to restore the motor positions. Sim-
ulation mode cannot be turned off if spec was invoked with the � � flag.

wait() — Waits for all asynchronous activity to complete. Returns true.

wait(flag) — If flag has bit one set (1), waits for moving to finish. If flag has bit
two set (2), waits for counting to finish. If flag has bit three set (4), waits for
other data acquisition (multi-channel scaling, for example) to finish. If flag
has bit five set (32), the function returns true if any of the activities flagged by
the first three bits are active, otherwise it returns false. Thus wait(35) (or
wait(0x23)) returns true if either counting or moving is active.

stop() — Stops all asynchronous activity. Returns true.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 99

stop(flag) — If flag has bit one set (1), stops all motors that are moving. If flag
has bit two set (2), stops the timer, counters and any other data acquisition
(multi-channel scaling, for example).

Counting

mcount(counts) — Starts the timer/clock counting for counts monitor counts.
Returns zero.

tcount(t) — Starts the timer/clock counting for t seconds, where t may be noninte-
gral. Returns zero.

getcounts — Loads the built-in array S[] with the contents of the scalers.

cnt_mne(counter) — Returns the string mnemonic of counter number counter as
given in the configuration file. (Mnemonics are, at most, 7 characters long.)
Resets to command level if not configured for counter .

cnt_name(counter) — Returns the string name of counter number counter as given
in the configuration file. (Names are, at most, 15 characters long.) Returns
"?" if not configured for counter .

cnt_num(mne) — Returns the counter number corresponding to the counter mnemonic
mne , o� � 1 if there is no such counter configured.

counter_par(counter, par [, val]) — Returns or sets parameters associated with
counter number counter as given in the configuration file. The following par
arguments are supported for all counters:
"unit" — returns the unit number of the indicated counter.
"channel" — returns the channel number of the indicated counter.
"scale" — returns the value of the scale factor set in the config file for the

indicated counter.
"responsive" — returns nonzero if the hardware appears to be working for the

indicated counter.
"controller" — returns a string that indicates the controller type of the indi-

cated counter.
"disable" — returns a nonzero value if the counter has been disabled by soft-

ware. If val is given and is nonzero, then the counter is disabled. If val
is given and is zero, the counter becomes no longer disabled. A disabled
counter channel will not be accessed by any of spec’s counting com-
mands. Any cdef() -defined macros will automatically exclude the por-
tions of the macro keyed to the particular counter when the counter is
software disabled.

100 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

In addition, device-dependent values for par are available for specific counter
models. See the Hardware Reference for values for specific controllers.

The counting functions mcount() and tcount() both program the timer/clock for a
specified count time. Before the count period begins, both functions clear and enable
all configured scalers and MCAs. The routines return immediately, as counting is
asynchronous. Use wait() , described below, to determine if counting has been com-
pleted. A ˆC will halt the timer/clock.

When the count time has expired, or counting is aborted by a ˆC , the scalers and
MCAs are disabled. Normally, enable signals from the timer/clock are used to
directly gate the scalers or MCAs. Software gating takes place whether or not hard-
ware gating is in place and can be used in lieu of hardware gating, although the
interval over which the gating occurs will not be as precisely controlled.

Controlling Motors

move_all — This command sets motors in motion. The sequence of events is as fol-
lows. For some motor controllers, spec first examines the controller registers
of all nonbusy motors and makes sure the contents agree with the current
positions in program memory. If there is a discrepancy, the user is asked to
choose the correct position. Next, spec prepares to move all motors that are
not already at the positions specified in the built-in A[] array, interpreted in
user units. A motor will not be moved if it is currently moving or if it is
marked as protected (via the configuration file) or unusable (due to failure of a
hardware presence test). If the target position of any of the motors is outside
the software limits, the entire move is canceled, and the program resets to
command level. Otherwise, the motors are started, and the command returns.

The sequence of commands when using move_all should almost always be,
wait(1) # Wait for moving to finish
read_motors(0) # Put current positions of all motors in A[]
(Assign new values to elements of A[] to be moved)
move_all # Move to those positions

If read_motors() is called before the motors have stopped, the values in A[]
will reflect the motor positions before they stopped. If read_motors() is not
called at all, or if you do not explicitly assign a value to each element of A[] ,
then you will not know for sure where some motors will be going when
move_all is called.

A ˆC halts moving, as does the sync command.

move_cnt — This command is similar to move_all , described above, but with the fol-
lowing differences. Just before the motors are started, the clock/timer is

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 101

enabled and programmed to gate the scalers with a longer-than-necessary
count time. The motors are then started at the base rate set in the config file,
but are not accelerated to the steady-state rate. No backlash correction is done
at the end of the move. When the move is completed, the clock/timer is
stopped. The move_cnt command is used in powder-averaging scans. (See the
powder-mode macros on page 148.)

sync — If any motors are moving, they are halted. The motor positions maintained
by the motor controller are then compared with the motor positions currently
set in the program. If there is a discrepancy, the user is asked which should be
changed. The sync command is used to place the motor hardware in a known
state and is supposed to fix any problems in communicating with the con-
trollers.

motor_mne(motor) — Returns the string mnemonic of motor number motor as given
in the configuration file. (Mnemonics are, at most, 7 characters long.) Resets
to command level if not configured for motor .

motor_name(motor) — Returns the string name of motor number motor as given in
the configuration file. (Names are, at most, 15 characters long.) Returns "?"
if not configured for motor .

motor_num(mne) — Returns the motor number corresponding to the motor mnemonic
mne , o� � 1 if there is no such motor configured.

motor_par(motor, par [, val]) — Returns or sets configuration parameters for
motor motor . Recognized values for the string par follow. Note, not all param-
eters are meaningful for all motor controllers.
"step_size" — returns the current step-size parameter. The units are gener-

ally in steps per degree or steps per millimeter. If val is given, then the
parameter is set to that value, but only if changes to the step-size
parameter have been enabled using spec_par("modify_step_size",
"yes") .

"acceleration" — returns the value of the current acceleration parameter.
The units of acceleration are the time in milliseconds for the motor to
accelerate to full speed. If val is given, then the acceleration is set to
that value.

"base_rate" — returns the current base-rate parameter. The units are steps
per second. If val is given, then the base rate is set to that value.

"velocity" — returns the current steady-state velocity parameter. The units
are steps per second. If val is given, then the steady-state velocity is set
to that value.

"backlash" — returns the value of the backlash parameter. Its sign and mag-
nitude determine the direction and extent of the motor’s backlash

102 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

correction. If val is given, then the backlash is set to that value. Set-
ting the backlash to zero disables the backlash correction.

"config_step_size" — returns the step-size parameter contained in the config
file.

"config_acceleration" — returns the acceleration parameter contained in the
config file.

"config_velocity" — returns the steady-state velocity parameter contained in
the config file.

"config_base_rate" — returns the base-rate parameter contained in the config
file.

"config_backlash" — returns the backlash parameter contained in the config
file.

"controller" — returns a string containing the controller name of the speci-
fied motor. The controller names are those used in spec’s config files.

"unit" — returns the unit number of the specified motor. Each motor con-
troller unit may contain more than one motor channel.

"channel" — returns the channel number of the specified motor.
"responsive" — returns a nonzero value if the motor responded to an initial

presence test or appears otherwise to be working.
"active" — returns a nonzero value if the motor is currently moving.
"disable" — returns a nonzero value if the motor has been disabled by soft-

ware. If val is given and is nonzero, then the motor is disabled. If val
is given and is zero, the motor becomes no longer disabled. A disabled
motor channel will not be accessed by any of spec’s commands, and, of
course, cannot be moved. Any cdef() -defined macros will automati-
cally exclude the portions of the macro keyed to the particular motor
when the motor is software disabled.

"slop" — returns the value of the slop parameter. If val is given, sets the slop
parameter. When this parameter is present, discrepancies between
hardware and software motors positions are silently resolved in favor of
the the hardware when the number of steps in the discrepancy is less
than the value of the slop parameter. (Not yet implemented for all
motor controllers.)

"home_slew_rate" — returns the value of the home-slew-rate parameter. If
val is given, sets the parameter. This parameter is the steady-state
velocity used during a home search. (Only available for selected con-
trollers.)

"home_base_rate" — returns the value of the home-base-rate parameter. If
val is given, sets the parameter. This parameter is the base-rate veloc-
ity used during a home search. (Only available for selected controllers.)

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 103

"home_acceleration" — returns the value of the home-acceleration parameter.
If val is given, sets the parameter. This parameter is the acceleration
used during a home search. (Only available for selected controllers.)

"dc_dead_band" — returns the value of the dead-band parameter for certain
DC motors. Sets the parameter if val is given.

"dc_settle_time" — returns the value of the settle-time parameter for certain
DC motors. Sets the parameter if val is given.

"dc_gain" — returns the value of the gain parameter for certain DC motors.
Sets the parameter if val is given.

"dc_dynamic_gain" — returns the value of the dynamic-gain parameter for cer-
tain DC motors. Sets the parameter if val is given.

"dc_damping_constant" — returns the value of the damping-constant parame-
ter for certain DC motors. Sets the parameter if val is given.

"dc_integration_constant" — returns the value of the integration-constant
parameter for certain DC motors. Sets the parameter if val is given.

"dc_integration_limit" — returns the value of the integration-limit parame-
ter for certain DC motors. Sets the parameter if val is given.

"dc_following_error" — returns the value of the dc-following parameter for
certain DC motors. Sets the parameter if val is given.

"dc_sampling_interval" — returns the value of the sampling-interval parame-
ter for certain DC motors. Sets the parameter if val is given.

"encoder_step_size" — returns the value of the encoder step size parameter.
Sets the parameter if val is given.

"step_mode" — returns the value of the step-mode parameter. Sets the param-
eter if val is given. A zero indicates full-step mode, while a one indi-
cates half-step mode.

"deceleration" — returns the value of the deceleration parameter. Sets the
parameter if val is given.

"torque" — returns the value of the torque parameter. Sets the parameter if
val is given.

Rereading the config file resets the values of all the motor parameters to the
values in the config file. Little consistency checking is done by spec on the val-
ues programmed with motor_par() . You must be sure to use values meaning-
ful to your particular motor controller.

In addition, device-dependent values for par are available for specific motor
controllers. See the Hardware Reference for values for specific controllers.

dial(motor, user_angle) — Returns the dial angle for motor motor corresponding to
user angle user_angle using the current offset between user and dial angles
for motor . The value returned is (user_angle − offset) / sign, where sign is ±1

104 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

and is set in the config file. The value is rounded to the motor resolution as set
by the step-size parameter in the config file. Resets to command level if not
configured for motor motor .

read_motors(how) — Reads the current motor positions from the motor controllers
and places the values in the A[] array, depending on the value of the argument
how . If bit 1 is set, the function returns dial values, otherwise user values are
returned. If bit 2 is set, a forced read of all hardware takes place. (For effi-
ciency, normally most motor controllers are not read if the position hasn’t been
changed by a move.) If bit 3 is set and if there is a discrepancy between the
software and hardware, the software will be silently corrected to match the
hardware. Note, the forced-read and “silent-sync” features are not yet imple-
mented for all motor controllers. Check the Hardware Reference or contact
CSS for hardware-specific information.

chg_dial(motor, dial_angle) — Sets the dial position of motor motor to dial_angle .
Returns nonzero if not configured for motor or if the protection flags prevent
the user from changing the limits on this motor. Resets to command level if
any motors are moving.

chg_dial(motor, cmd) — Starts motor motor on a home or limit search, according to
the value of cmd as follows:
"home+" — Move to home switch in positive direction.
"home-" — Move to home switch in negative direction.
"home" — Move to home switch in positive direction if current dial position is

less than zero, otherwise move to home switch in negative direction.
"lim+" — Move to limit switch in positive direction.
"lim-" — Move to limit switch in negative direction.

Positive and negative direction are with respect to the dial position of the
motor. (At present, most motor controllers do not implement the home or limit
search feature.)

� ��� ��� � � ��� ��� ����� �
��� � � ��� ��� ����� � ������� motor or if the motor is
protected, unusable or moving, else returns zero.

get_lim(motor, flag) — Returns the dial limit of motor number motor . If
flag > 0, returns the high limit. If flag < 0, returns the low limit. Resets
to command level if not configured for motor .

user(motor, dial_angle) — Returns the user angle for motor corresponding to dial
angle dial_angle using the current offset between user and dial angles for
motor . The value returned is sign × dial_angle + offset, where sign is ±1 and is
set in the config file. The value is rounded to the motor resolution as set by the
step-size parameter in the config file. Resets to command level if not config-
ured for motor .

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 105

chg_offset(motor, user_angle) — Sets the offset between the dial angle and the
user angle, using the current dial position and the argument user_angle for
motor motor according to the relation user_angle = offset + sign × dial_angle
where sign is ±1 and is set in the config file. Returns nonzero if not configured
for motor . Resets to command level if any motors are moving.

set_lim(motor, low, high) — Sets the low and high limits of motor number motor .
low and high are in dial units. It does not actually matter in which order the
limits are given. Returns nonzero if not configured for motor or if the protec-
tion flags prevent the user from changing the limits on this motor. Resets to
command level if any motors are moving.

Data Handling and Analysis Functions

spec can store data in up to 256 independent data arrays called groups. Each group
is configured (see below) to have a particular number of data elements per point. For
example, each point in a group could have elements for H , K , L , and detector counts.
Alternatively, each point could have just one element and be used to hold data
obtained from an MCA.

Groups are configured using the data_grp() function. A group can have up to 2048
elements per point. The maximum number of points in a group is determined by the
product of the number of elements per point and the number of points. That product
can be no more than 65,536, and may be slightly less depending on how the number
of elements divides into 2048. The maximum number of points for all groups is
262,144. (These limits are arbitrary and are set to control the size of static data
arrays and auxiliary files. If requested, CSS can make the limits larger.)

When starting spec for the first time or with the � �
(fresh) flag, one data group

(group 0) is configured for 4096 points, with each point consisting of two elements.

When leaving spec, the current data group configuration and data points are saved.

spec has several functions to manipulate the internal data. These functions allow
unary and binary arithmetic operations, math functions and analysis operations to
be performed on all the elements of a group or among elements in different groups.

In the functions described below, if an element number is negative, the element num-
ber is obtained by adding the number of elements per point in the group to the nega-
tive element number. F�� � ��� ���

� � � ��
� ��� �� �� � ��� � � � � �
 � � � ��
� ��� �� �� � � ��
� ��� �� � � � � � � �����
second to last, etc.

All functions reset to command level if an invalid group, point or element is given as
an argument. Functions that don’t need to return anything in particular return zero.

106 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

data_grp(grp, npts, wid) — Configures data group grp . The group will have npts
points, each having wid elements. If npts and wid match the previous values
for the group, the data in the group is unchanged. Otherwise, the data values
of the reconfigured group are set to zero. If wid is zero, the group is elimi-
nated. If npts is zero, as many points as possible are configured. If npts is
negative, as many points as possible, but not more than −npts are configured.
If grp � � ��� ������� � ��� �
����� � �
� ��
 �
��� � � ��� ��������� � � ��� �

 ��	 �����

data_info(grp, what) — Returns data group configuration information for group
grp , according to the the string what . Values for what are:
"npts" — the number of configured points.
"elem" — the number of configured elements.
"last" — the number of the last point added to the group.
"precision" — the number of bytes per element, either 4 or 8.

If the group number is invalid, or if the string what is none of the above,
�
��� ��� � � ��� �

data_get(grp, npt, elem) — Returns the value of element elem of point npt in group
grp .

data_put(grp, npt, elem, val) — Assigns the value val to element elem of point
npt in group grp .

data_nput(grp, npt, val0 [, val1 ...]) — Assigns values to point npt of group
grp . Element 0 is assigned val0 , element 1 is assigned val1 , etc. Not all ele-
ments need be given, although elements are assigned successively, starting at
element 0.

data_uop(g_src, e_src, g_dst, e_dst, uop [, val]) — Performs the unary opera-
tion specified by the string uop on element e_src for all points in group g_src .
The results are put in element e_dst of the corresponding points in group
g_dst . The source and destination groups and/or elements may be the same.
If the number of points in the groups differ, the operation is carried out on up
to the smallest number of points among the groups. Values for uop are:
"clr" — clear to zero.
"fill" — each element is set to point number, starting at 0.
"neg" — Negative of source.
"abs" — Absolute value of source.
"inv" — Inverse of source.
"sin" — Sine of source.
"cos" — Cosine of source.
"tan" — Tangent of source.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 107

"asin" — Arcsine of source.
"acos" — Arccosine of source.
"atan" — Arctangent of source.
"log" — Natural logarithm of source.
"exp" — Exponential of source.
"log10" — Log base 10 of source.
"pow" — The val power of source.
"copy" — Value of source.
"rev" — Reversed copy of source.
"sqrt" — Square root of source.
"set" — All elements set to the value of val.
"contract" — Every val points are averaged to make a new point.
"add" — Source plus val.
"sub" — Source minus val.
"mul" — Source times val.
"div" — Source divided by val.

If any of the operations would result in an exception (divide by zero, log or
square root of a negative number, etc), the operation is not performed and a
count of the operations skipped is printed as an error message.

data_bop(g0_src, e0_src, g1_src, e1_src, g_dst, e_dst, bop) — Performs the
binary operation specified by the string bop on elements e0_src and e1_src
for all points in the groups g0_src and g1_src . The results are put in element
e_dst for the corresponding points of group g_dst . The source and destina-
tion groups and/or elements may be the same. If the number of points in the
groups differ, the operation is carried out on up to the smallest number of
points among the groups. Values for bop are:
"add" — The sum of the source elements.
"sub" — Source 0 minus source 1.
"mul" — The product of the source elements.
"div" — Source 0 divided by source 1.

If the divide would result in an exception, the operation is not performed and a
count of the operations skipped is printed as an error message.

data_anal(grp, start, npts, el_0, el_1, op [, val]) — Performs the operations
indicated by op on npts points in group grp , starting at point start . The
operations use the values in element el_0 (if applicable) and el_1 . If npts is
zero, the operations are performed on points from start to the last point added
using data_nput() or data_put() . The values for op are:

108 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

"min" — Returns the minimum value of el_1. (el_0 is unused.)
"max" — Returns the maximum value of el_1. (el_0 is unused.)
"i_at_min" — Returns the point number of the data point with the minimum

value of el_1. (el_0 is unused.)
"i_at_max" — Returns the point number of the data point with the maximum

value of el_1. (el_0 is unused.)
"i_<=_value" — Returns the point number of the nearest data point in el_1 at

or below val, starting from the first point. (el_0 is unused.)
"i_>=_value" — Returns the point number of the nearest data point in el_1 at

or above val, starting at the last point. (el_0 is unused.)
"uhmx" — Returns the value in el_0 corresponding to half the maximum value

in el_1 and at a higher index.
"lhmx" — Returns the value in el_0 corresponding to half the maximum value

in el_1 and at a lower index.
"sum" — Returns the sum of the values in el_1. (el_0 is unused.)
"fwhm" — Returns the full-width in el_0 at half the maximum value of el_1.
"cfwhm" — Returns the center of the full-width in el_0 at half the maximum

value of el_1.
"com" — Returns the center of mass in el_0 with respect to el_1. The value is

the sum of the products of each el_0 and el_1 divided by the number of
points.

"x_at_min" — Returns the value of el_0 at the minimum in el_1.
"x_at_max" — Returns the value of el_0 at the maximum in el_1.
"sumsq" — Returns the sum of the squares in el_1. (el_0 is unused.)

The following operations treat a data group as a two dimensional data array
with rows indexed by the point number and the columns indexed by the ele-
ment number. The operations work on the portion of the group determined by
the starting row start the number of rows npts , the starting column el_0 and
the end row el_1 . As usual, if npts is zero, all points (rows) from start to the
last are considered. A negative element (column) number is added to the
group width to obtain the element (column) to use.
"gmin" — Returns the minimum value.
"gmax" — Returns the maximum value.
"gsum" — Returns the sum of all values.
"i_at_gmin" — Returns the index number of the minimum value. The index

number is the row number times the group width plus the element num-
ber.

"i_at_gmax" — Returns the index number, as defined above, of the maximum
value.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 109

data_read(file_name, grp, start, npts) — Reads data from the ASCII file
file_name , and stuffs the data into group grp starting at point start , reading
up to npts points. If npts is zero, all the points in the file are read. The val-
ues on each line of the file are assigned into successive elements for each point
in the group. If there are more elements on a line in the file than fit in the
group, or if there are more points in the file than in the group, the extra values
are ignored. Lines beginning with the # character are ignored.

� ��� � �
� � ��� ���
the file can’t be opened, otherwise returns the number of points read.

data_fit(pars, grp, start, npts, el_data, el_data [, ...]) — Performs a linear
fit of the data in element el_data to the terms in the elements specified by
el_pars . The fitted parameters are returned in the array pars supplied by
the user. The function returns the chi-squared value of the fit, if the fit was
successful. A ��� � � �
��� ���
����� ��� �������
� ���
� ��� � � � � � � ��� � ��� � � � ����� � ��� � � � �
��� ���
���
ance matrix is singular. The fit algorithm is along the same lines as the lfit()
routine in Numerical Recipes (W. H. Press, et al., Cambridge University Press,
1986, page 512).

data_plot(grp, start, npts, el_0, el_1 [, el_2 ...]) — Plots the current data
in group grp starting at point start and plotting npts points. Element el_0 is
used for x. Elements given by the subsequent arguments (up to a maximum of
64) are plotted along the y axis. The element arguments can be combined in a
single space- or comma-delimited string, which can make creation of macros to
plot a variable numbers of curves in the same plot window easier.

If npts is zero, only the points from start to the last point added using
data_nput() or data_put() are plotted.

If preceded by a call of plot_cntl("addpoint") and the ranges have not
changed, only point start + npts − 1 is drawn. If preceded by a call of
plot_cntl("addline") the current plot will not be erased, and the plot ranges
will not be changed.

The plotting area is not automatically erased by a call of data_plot()
� � � �

plot_cntl("erase") for that. The axis ranges are set using the
plot_range() function. See plot_cntl() for other options that affect drawing
the plot.

plot_cntl(cmd) — Selects built-in plotting features. The argument cmd is a string of
comma- or space-delimited options. The following options may be preceded by
a minus sign to turn the associated feature off, nothing (or an optional plus
sign) to turn the feature on or a question mark to return a value of one or a
zero that indicates whether the associated feature is currently on or off:

110 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

"xlog" — Use a logarithmic x axis.
"ylog" — Use a logarithmic y axis.
"xexact" — Force x-axis minimum and maximum to be set to the scan end-

points (as opposed to being rounded).
"colors" — Enable the use of colors.
"dots" — Draw graphics-mode points with large dots.
"lines" — Connect graphics-mode points with lines.
"ebars" — Draw vertical lines through each point of length equal to the twice

the square root of the y value.
"persist" — Keep graphics mode on after ordinary user input.
"perpetual" — Keep graphics mode on continuously (appropriate if using X

windows, for example).

Other plot_cntl() options are:
"colors=bgnd:win:text:axis:symb:..." — Assigns colors for drawing the vari-

ous graphics-mode elements. The values for bgnd (the background color
of the area outside the axis), win (the background color of the area
inside the axis), text (the color of the text), axis (the color of the axis)
and symb ... (the color of the plotting symbols) are integers.
The first 10 colors are standardized according to the following table:

0 background (normally white or black)
1 foreground (normally black or white)
2 blue 3 red
4 green 5 yellow
6 cyan 7 magenta
8 white 9 black

Other colors may be available depending on the particular device. You
don’t have to assign values to all colors.

"colors[numb]" — Returns the current color assignments, where numb is a
number between zero and 67. Numbers zero through three return the
colors assigned to the bgnd , win , text and axis elements respectively.
Numbers from 4 through 67 return the colors assigned to the symbols
for data elements zero through 63.

"filternumb" — Selects filter number numb , where numb can be any of the
numerals from 1 through 5. All plotting commands are directed to this
filter. The default filter is filter 1. Each filter is associated with a sepa-
rate process. On an X windows display, each filter is associated with a
separate window.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 111

"title=string" — On an X windows display, the title given by string is used in
the XSetWMName() and XSetWMIconName() calls to set the window
and icon labels. With most X11 window managers, that means the title
will appear in the window’s title bar.

"geometry=widthxheight+xoff+yoff" — With the x11 high-resolution plot win-
dows, sets the size and position of the window. As with the conventional
X11 syntax for specifying window geometry, not all parts of the geometry
string are required.

"open" — Turn on graphics mode. If there is no graphics filter program cur-
rently active for the current filter number (see above), the filter program
associated with the current GTERM variable is started. Recognized GTERM
values are vga , ega , cga , herc , x11 , and sun .

"close" — Turn off graphics mode, unless the perpetual or persistent mode
has been selected.

"kill" — Turn off graphics mode and terminate graphics process.
"erase" — Clear the graphics-mode screen (or the text screen if graphics mode

is off).
"addpoint" — Before a call to data_plot() will cause the plot to be made with

minimal redrawing. Used for updated plotting during scans.
"addline" — Before a call to data_plot() will prevent the current data from

being erased and the new data from changing the ranges when the new
data points are drawn. Used for plotting several data sets from differ-
ent data groups on top of each other.

"mca" — Before a call to data_plot() will cause the data points to be dis-
played using a minimal redrawing algorithm, appropriate for displaying
data actively being accumulated by an MCA-type device. The "dots"
and "ebars" modes must be turned off for the algorithm to work effec-
tively.

"lp" — Before a call to data_plot() will generate printing instructions appro-
priate for plotting on a 132-column printer.

data_dump(grp, start, npts, el_0, [, el_1 ...] [, fmt1] [, fmt2]) — Effi-
ciently writes elements from group grp to turned on output devices. The start-
ing point is start and the number of points is npts . The elements specified by
el_0 , e1_1 , etc., are printed. If el_0 is the string "all" , all the elements for
each point are printed. If npts is zero, only the points from start to the last
point added using data_nput() or data_put() are printed. The element argu-
ments can be combined in a single space- or comma-delimited string.

The optional argument fmt1 is a string, having the format "%#" , that specifies
how many data points (specified by the number #) are to be printed on each
line. If the number # is followed by the letter C , a backslash is added to each

112 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

continued line, appropriate for saving MCA data in manageable length lines.
New versions (since May 1, 1995) of the C-PLOT scans.4 user function interpret
the continued lines correctly for MCA data. The optional argument fmt2 is a
string that specifies an alternate printf()-style format for the values. Only e , g
and f formats are recognized. For example, "%15.8f" uses fixed-point format
with eight digits after the decimal point and a fifteen-character-wide field. The
default output format is "%g" . See printf() in a C manual for more informa-
tion. Note that in the default installation, the internal data arrays use single-
precision floating values, which contain only about 8 decimal digits of signifi-
cance.

plot_move(x, y [, string [, color]]) — Moves the current position to column x
and row y , where column 0, row 0 is the upper left corner of the screen. If the
third argument string is present, it is written as a label at the given position.
If using color high-resolution graphics, the fourth argument, if present, is the
color to use to draw the label. The background color for the entire label will be
the background color at the starting position. If graphics mode is not on,
plot_move() works just as tty_move() . Returns true.

plot_range(xmin, xmax, ymin, ymax) — Sets the ranges of the internally generated
plots. If any of the arguments is the string "auto" , the corresponding range
limit is determined automatically from the data at the time the plot is drawn.
If any of the arguments is the string "extend" , the corresponding range limit
is only changed if the current data decrease the minimum or increase the max-
imum. Returns true.

The Data-Pipe Facility

spec’s data_pipe() function allows integration of external code with spec. With the
data-pipe facility, spec sends information to the external program, allows the exter-
nal program to execute for a time, and then receives information back from the exter-
nal program. The information can be in the form of a string or a number, and can
also include the contents of a spec data group or data array. The handshaking and
data transfer between spec and the data-pipe program is done in an overhead mod-
ule included in the spec distribution that is linked with the external code.

From spec, access to the data-pipe facility is through the data_pipe() function
called from the user level. Usage is as follows.

data_pipe("?") — Lists the currently running data-pipe processes with name and
process id.

data_pipe(program, "kill") — Kills the process associated with program .

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 113

data_pipe(program [, args [, grp_out|arr_out [, grp_in|arr_in]]]) — Initiates
or resumes synchronous execution of the special process named program . If
program contains a / character, then it contains the complete absolute or rela-
tive path name of the program to run. Otherwise the program must be in the
SPECD/data_pipe directory, where SPECD is the built-in spec variable contain-
ing the path name of spec’s auxiliary file directory. You can use the string "."
for program as an abbreviation for the same program name as used in the last
call to data_pipe() .

The string value of args is made available to the user code in the program as
described in the next section.

The optional arguments grp_out and grp_in are data group numbers. If
grp_out is present, the contents of that group are sent to the data-pipe pro-
gram. If grp_in is present, it is the number of the data group that will receive
values from the data-pipe program. The data-pipe program configures the size
of grp_in for an implicit call to data_grp() within data_pipe() . If the
grp_in argument is absent, spec will not receive data-group data from the
data-pipe program. If grp_out is also absent, group data won’t be sent to the
data-pipe program. Even without group arguments, the data-pipe program
can still return values to spec in the form of assigning a number or string
return value to data_pipe() .

Either or both of the data group arguments can be replaced with the array
arguments arr_out and arr_in . The arrays referred to by these arguments
must be the data arrays declared explicitly with the array keyword. When
sending array data to the data-pipe program, the array data is first converted
to double precision floating point format. The received data is always double,
but is converted to fit the declared data type of arr_in . Only as much data as
will fit into the array will be assigned. The number of columns in arr_in
should match the width of the data sent over by the data-pipe program. If not,
the data will still be assigned to the array, but will be misaligned.

Prior to spec release 4.03.13, only one data_pipe() function could be active at
a time.

The user C code can be complied and linked using the command
dpmake program [UOBJ=...] [LIBS=...] [optional_make_args]

The command dpmake is a short shell script which invokes the make utility
using the makefile data_pipe.mak in the SPECD/data_pipe directory. The file
program .c will be compiled and linked with the data-pipe overhead module,
and the result placed in an executable file named program . If additional object
modules or libraries need to be linked, they can be specified with the UOBJ= or

114 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

LIBS= parameters. If the tools provided are not sufficient, you can create cus-
tom makefiles based on the distributed data_pipe.mak.

After linking program , move it to the SPECD/data_pipe directory for easy
access by all users.

The subroutines available from the user C code portion of the data-pipe pro-
gram are described below.

The skeleton user C-code part of the data-pipe program should contain the fol-
lowing:

#include <user_pipe.h>

user_code(argc, argv)
char **argv;
{

...
}

The include file user_pipe.h contains declarations of the subroutines available
in the C code. The file resides in the SPECD/data_pipe directory.

The subroutine user_code() is called by the overhead part of the data-pipe
program each time data_pipe() is invoked in spec. The parameter argc is
set to the number of space-delimited words present in the string value of the
args parameter to data_pipe() . The parameter argv is an array of character
pointers that point to each of the argc space-delimited words in the args
string. Alternatively, the get_input_string() function (see below) returns
the args string in its entirety.

The user_code() routine will be called every time the data_pipe() function is
called from spec. The data-pipe program does not exit between calls of
user_code() , so you should be careful about allocating memory or opening
files each time user_code() is called without freeing the memory or closing
the files each time user_code() returns. Alternatively, you can make sure
such things are only done the first time user_code() is called.

Besides the argc , argv technique for accessing the args typed in the
data_pipe() call, the following function is available (as of spec release
4.03.13):
char * get_input_string() — Returns a pointer to memory holding a copy of

the second argument args entered with the call to data_pipe() .

If data_pipe() is sending a data group or array to the user code, the following
subroutines provide access to the data parameters and values.
int get_group_number() — Returns the group number specified as the

data_pipe() grp_out argument. A � � � � �
��� ���
� ��� ��� ��� ���
� ��	 � � �

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 115

specified. A ��� � � �
��� ���
� ��� ����������������� ����� � � �
� ��
 ��� ���
����	 � � � �
���� � � �����
int get_group_npts() — Returns the number of points in the data_pipe()

grp_out or the number of rows in arr_out .
int get_group_width() — Returns the number of elements per point in the

data_pipe() grp_out or the number of columns in arr_out .
int get_input_data(double *x, int pts, int wid) — Transfers data from the

grp_out or arr_out specified in the call to data_pipe() to the memory
area indicated by the pointer x . The pointer x is treated as an array
dimensioned as x[pts][wid]. If the data group/array has more
points/rows than pts or more elements/columns than wid , only as many
points/rows or elements/columns as are available in the data
group/array are copied. Data from only a single element/column may be
retrieved using one or more calls of get_input_elem() below. If the
data in the data group from spec is float rather than double (which
depends on spec’s installation configuration), float-to-double conversion
is done within the call to get_input_data() . The return value is the
number of points/rows copied.

int get_input_elem(double *x, int pts, int el) — Transfers one element of
the data from the grp_out or arr_out specified in the call to
data_pipe() to the memory area indicated by the pointer x . No more
than pts points are copied from element/column el of the the data
group/array. If the data in the data group from spec is float rather than
double (which depends on spec’s installation configuration), float-to-
double conversion is done within the call to get_input_data() . The
return value is the number of points/rows copied.

The following subroutines allow you to send group/array data back to spec
when data_pipe() is invoked with a grp_in or arr_in argument. For a data
group, the call to data_pipe() will implicitly call data_grp() to configure the
size of the return group according to the parameters set in the following sub-
routines. For an array, the array must already be declared and dimensioned.

There are two ways to send group/array data back to spec. The subroutine
set_return_data() allows you to send the entire data group in one call that
passes both a pointer to the data and the data group size to the data-pipe pro-
gram overhead code. Alternatively, you can use the set_return_group() sub-
routine to configure the data group/array size, followed by one or more calls to
set_return_elem() to set one element/column of the data group/array at a
time.
int get_return_group_number() — Returns the group number specified as the

data_pipe() grp_in argument. A � � � � �
��� ��� ����� � � ��� ���
����	 � � � �
����
���
fied. A � � � � �
��� ��� ����� ����� ����� � ��������� � � �
� �
 ��� ���
� ��	 � � � �
����
� � �����

116 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

void set_return_data(double *x, int pts, int wid, int last) — Configures
the return data group and copies the data at the same time. The pointer
x is considered as an array of dimension x[pts][wid] for the purpose
of transferring data to the data group. The argument last sets the
index number of the last element added to the group, which is used by
the various data analysis and plotting functions available in spec.

void set_return_group(int pts, int wid) — Configures the size of the return
data group without copying data. This subroutine must be called once
before calling set_return_elem() below.

void set_return_elem(double *x, int pts, int el, int last) — Copies one
element to the return data group, which must have been previously con-
figured by a call of set_return_group() , above. If the parameters pts
or el exceed the values configured, or if the return group hasn’t been
�
��� � � � �
������� � � � � � �
� ��������� � ��� � �
� � ��� � Otherwise zero is returned.

You can set the value that the data_pipe() function returns in spec from the
user C code in your data-pipe process. You can have data_pipe() return a
number or a string or, if necessary, reset to command level. If no explicit
return value is assigned in the user C code, data_pipe() returns zero.
int set_return_string(char *s) — Sets the return value of data_pipe() to

the string s . T�� � � � �� � �
 � �� �� � � �� � � � � � � �
 � � �� � �� � � �� � � � � 	 � � �
 � � � � �� � � �
obtained for the string s , otherwise it returns zero.

void set_return_value(double v) — Sets the return value of data_pipe() to
the value v .

void do_error_return() — Calling this subroutine from the user C code
causes control to pass back to spec without returning data group or
array values, if they have been set. The return value of data_pipe()
will be the value set by set_return_value() above, if such a value has
been set, otherwise the return value of data_pipe() � ��
�
 ��� ��� � This
subroutine does not return.

void do_abort_return() — Calling this subroutine from the user C code
causes control to pass back to spec without returning data group or
array values, if they has been set. In spec, there is no return from
data_pipe() , rather spec resets to command level. This subroutine
does not return.

void do_quit_return() — Calling this subroutine from the user C code causes
control to pass back to spec normally as if user_code() returned nor-
mally, but the data-pipe program will then exit. This subroutine does
not return.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 117

Str ing and Number Functions
Math Functions

exp(x), exp10(x) — Returns e x and 10 x respectively.

log(x), log10(x) — Returns the natural logarithm and the base 10 logarithm of x
respectively.

sqrt(x) — Returns the square root of x.

pow(x, y) — Returns x y.

fabs(x) — Returns the absolute value of x.

int(x) — Returns the integer part of x. The integer part is formed by truncation
towards zero.

rand() — Returns a random integer between 0 and 32767.

rand(x) — If x is positive, returns a random integer between 0 and x , inclusive. If x
is negative, returns a random integer between −x and x , inclusive. Values of x
� � � ������� ������� � ������� ���
�� � � ������� ��� ������� ���
� � ��� ��� � � � � �
�� � ��� � � If x is zero,
zero is returned. The C-library rand() function is used to obtain the values.
The seed is set to the time of day on the first call. The randomness (or lack
thereof) of the numbers obtained is due to the C library implementation.

srand(seed) — Sets the seed value for the random number generator used by the
rand() function to the integer value seed . This function allows the same
sequence of random numbers to be generated reproducibly by resetting the
seed to the same value.

sin(x), cos(x), tan(x) — Returns the sine, cosine and tangent, respectively, of the
argument x, which must be in radians.

asin(x), acos(x), atan(x) — Returns the arc sine, arc cosine and arc tangent,
respectively, of the argument x. The return value is in radians. asin() and
atan() return values in the range -π/2 to π/2, while acos() returns values from
0 to π.

atan2(y, x) — Returns the arc tangent of y/x using the signs of the arguments to
determine the quadrant of the return value. The return value is in the range
-π to π. Having both y and x zero is an error.

Str ing Functions

index(s1, s2) — Returns an integer indicating the position of the first occurrence of
string s2 in string s1 or zero if s1 does not contain s2 .

118 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

split(string, array) — Splits the string string at space characters and assigns the
resulting substrings to successive elements of the associative array array ,
starting with element 0. The space characters are eliminated. The functions
returns the number of elements assigned.

split(string, array, delimiter) — As above, but splits the string into elements
that are delimited by the string delimiter . The delimiting characters are
eliminated.

substr(string, m) — Returns the portion of string string that begins at position m .

substr(string, m, n) — As above, but the returned string is no longer than n .

length(string) — Returns the length of the string string .

sprintf(format [, a, b, ...]) — Returns a string containing the formatted print.
See sprintf() in a C-language reference manual.

sscanf(string, format, a [, b, ...]) — Scans the literal string or string variable
string for data, where format contains a format specification in the same
style as the C language scanf() function. Each subsequent argument is a vari-
able name or array element that will be assigned the values scanned for. The
function returns the number of items found in the string.

Conversion Functions

asc(s) — Returns the ASCII value of the first character of the string value of the
argument.

bcd(x) — Returns a 24-bit integer that is the binary-coded decimal representation of
the nonnegative integer x.

dcb(x) — Returns the nonnegative integer corresponding to the 24-bit binary-coded
decimal representation x.

deg(x) — Returns the argument converted from radians to degrees.

rad(x) — Returns the argument converted from degrees to radians.
.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCE MANUAL 119

120 REFERENCE MANUAL INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

STANDARD MACRO GUIDE

122 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Introduction
The standard macros included with the spec distribution are an integral part of the
spec package. For some sites, the standard macros are sufficient for performing
experiments. For others, the standard macros provide a starting point for custom
development. This reference presents some of the standard macros, grouped by func-
tionality. For many macros, the complete definition is printed. At the end of this ref-
erence, the construction of the scan macros is discussed in depth.

The following files, found in the macros subdirectory of the distribution, contain the
definitions for all the macros in the standard library. If it is not obvious in which file
a particular macro is stored, you can always change to the macros directory and type
grep macro_name * , where grep is the standard UNIX file searching utility.

File Contents
count.mac Counting macros (ct , uct , count , show_cnts , ...).
cplot.mac The cplot_plot macro.
energy.mac For an energy-selecting monochromator (Escan , set_E , ...).
file.mac The newfile macro.
getscan.mac The getscan macro.
hkl.mac General reciprocal space macros (br , mk , ca , wh , ...).
motor.mac Motor moving and status (mv , umv , wa , set , set_lm , ...).
plot.mac Data plotting (plot , plot_res , rplot , splot , ansiplot , ...).
powder.mac Powder-mode macros (setpowder , _pmove and _pcount).
region.mac Macros to define a series of scans(setreg and doreg).
scans.mac Basic scan macros (ascan , a2scan , hklscan , ...).
scans1.mac Scan helper macros (_head , _loop , setscans , ...).
start.mac The startup macro.
temper.mac Temperature control (settemp , measuretemp , te , ...).
util.mac Misc. utility macros (do , qdo , savmac , comment , u , help , ...).

fivec.src Fivec-circle geometry macros.
fourc.src Four-circle geometry macros.
sixc.src Sixc-circle geometry macros.
spec.src Version for no diffractometer.
surf.src Special liquid surface diffractometer macros.
twoc.src Two-circle geometry macros.
zaxis.src Z-axis geometry macros.

When installed, the .mac files above are combined into one file and placed (assuming
the default auxiliary file directory) in /usr/local/lib/spec.d/standard.mac. A file
formed from the first four letters of the geometry configuration contains the geometry

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 123

macros from one of the .src files above. For example, /usr/lib/spec.d/four.mac is cre-
ated for the four-circle geometry and contains the macros from fourc.src.

The macro definitions are the least stable part of the spec package. The macros are
easy to change — no recompilation of C code is necessary — and the intent of the
designers of the spec package was to put its flexibility in the macros. Thus, the defi-
nitions presented below may differ with the macro definitions in your current version
of spec.

You may find the existing macros do not accomplish what you want. A simple proce-
dure for modifying a standard macro is to use the macro savmac to copy the definition
of the existing macro into a file. You then edit the macro definition in that file and
read it back in using the do macro. You can gather your customized macros into a file
named spec.mac in your current directory or into the file /usr/lib/spec.d/site.mac.
Both of these files are read every time you start spec, whether or not you are start-
ing fresh.

If you have made generally useful modifications to the standard macros, or if you
have developed your own macros, please send copies to Certified Scientific Software.
We include many user-contributed macros in each new release of the spec package.

Some Tips
The syntax rules for defining macros are given in the Reference Manual on page 90.
The suggestions that follow offer some additional guidance for writing macros that
will fit in well with the standard library.

When a macro requires arguments, it is a good idea to check that the right number of
arguments have been given, and if not, print a usage message and exit to command
level. The symbol $# will be set to the number of arguments when the macro is run.
For example,

def ascan ’
if ($# != 5) {

print "Usage: ascan motor start finish intervals time"
exit

}
...

’

If an argument is supposed to be a motor number or mnemonic, use the _check0
macro before operating on the motor. The _check0 macro exits to command level if

124 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

the argument is not a valid mnemonic. For instance, to check the first argument of a
macro, use

_check0 "$1"

A mistyped mnemonic might otherwise become a variable with an arbitrary value
(zero for a new variable) resulting in an operation on the wrong motor (usually motor
zero).

It is good practice to refer to arguments just once when writing macros to avoid side
effects that occur, for example, if the macro is invoked as mymac i++ . Here the vari-
able i would be incremented each time $1 is used in the macro. In the scan macros,
the arguments are assigned to global variables just after the usage check:

def ascan ’
...
{ _m1 = $1; _s1 = $2; _f1 = $3; _n1 = int($4); _ctime = $5 }
...

’

When a macro changes a parameter or mode that affects later data, it is a good idea
to note that change in the data file and on the printer. Macros such as comment ,
qcomment and gpset are available for that purpose.

If possible, declare local variables local to avoid conflicts with other variables, espe-
cially when macros are nested or parsed together.

Watch out for name conflicts when naming new macros and using variables. You can
prevent most conflicts by using the local keyword to explicitly declare local names
within a statement block. Names declared that way can be used as symbols within
the statement block even if they are already in use as macros. Otherwise, if you con-
struct commands using a variable name that is really a macro name, when that
intended variable is encountered, it will be replaced by the macro, making a mess of
things.

Note that several one-letter names such as d , h , p and l are already in use as macro
names. Don’t use these names as variables, unless they are declared local inside a
statement block. Typing lsdef ? will list all one letter macro names. Typing lsdef
_? will list all two letter macro names that begin with an underscore.

Command files that define macros often assign default values to related global vari-
ables. You should always check if these global variables have already had a value
assigned before assigning default values. If the user had assigned a new value to a
variable, you do not want that assignment undone if the macro file is reread. The
built-in whatis() function can be used to see if a variable has been assigned a value
(see page 75 for an explanation of the whatis() return values),

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 125

if ((whatis("DATAFILE")>>16)&0x0800) {
print "Warning: No open data file. Using \"/dev/null\".\n"
open(DATAFILE = "/dev/null")

}

When writing macros that move motors, be careful with the move_all command.
When moving motors, always do a waitmove and getangles first. Then assign new
values to A[] , and finally call move_all (or move_em).

When obtaining input from the user, the functions getval() and yesno() are useful.
For example,

_update = yesno("Show updated moving and counting", _update)
g_mode = getval("Geometry mode", g_mode)

results in the following screen output:
Show updated moving and counting (NO)?
Geometry mode (3)?

You can also use the input() built-in function to obtain user input. Remember,
though, that input() returns a string. If the string contains a valid number, the
automatic string-to-number conversion will take place, if context requires it. How-
ever, no expression simplification is done on the string, so a response of 2+2 will not
have a number value of 4 when returned by input() .

When using on() and off() to control output, do the operations on "tty" last. Since
"tty" is always turned back on if everything else is turned off, the commands

off("tty");on(PRINTER);print "hello world";on("tty");off(PRINTER)

will not have the desired effect. The first off() turns off everything, so "tty" is
automatically turned back on, and the message goes to both PRINTER and "tty" .

Use existing UNIX utilities if they can be of help. For example, if you manipulate
UNIX file names in your macros you can use the return value of the test utility to
check for existence of a file. For example, the function unix("test -r $1") will
return zero if the file specified by the argument exists and is readable.

126 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Utility Macros
UNIX Commands

These simple macros are for commonly used UNIX commands.
def cd ’chdir("$*")’ # Change working directory
def pwd ’print CWD’ # Print working directory
def u ’unix("$*")’ # Execute arbitrary shell commands
def ls ’unix("ls $*")’ # List files
def l ’unix("ls -l $*")’ # Long listing of files
def cat ’unix("cat $*")’ # Show file contents
def less ’unix("less $*")’ # Peruse files with handy utility
def mail ’unix(sprintf("%s $*", MAIL))’ # Send mail
def ed ’unix("ed $*")’ # Invoke an editor
def ned ’unix("ned $*")’ # Invoke another editor
def vi ’unix("vi $*")’ # Invoke another editor

The u macro, without arguments, spawns an interactive subshell, using your SHELL
environment variable.

Note how the above macros supply parentheses and quotation marks around the
arguments, as required by the parser’s grammar rules.

Basic Aliases

The main purpose of these macros is to provide a shorthand way of typing some use-
ful commands.

def d ’print date()’ # Print current time and date
def p ’print’ # Shorthand for print
def h ’help’ # Shorthand for help, below
def hi ’history’ # Shorthand for history
def beep ’printf("\a")’ # Sound the bell
def cl ’tty_cntl("cl")’ # Clear the screen
def com ’comment "$*"’ # Shorthand for comment, below

def ond ’if (DATAFILE) # Send output to data file
{ on(DATAFILE) }’

def offd ’if (DATAFILE) # Stop sending
{ off(DATAFILE)’

def onp ’if (PRINTER) # Send output to the printer
{ on(PRINTER) }’

def offp ’if (PRINTER != "") # Stop sending
{ off(PRINTER) }’

def ont ’on("tty")’ # Send output to the terminal
def offt ’off("tty")’ # Stop sending

def fon ’if ($# == 1) on("$1")
else { print "Usage: fon filename"; on(); }’

def foff ’if ($# == 1) off("$1")

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 127

else { print "Usage: foff filename";on(); }’

def waitall ’{ user_waitall; wait(0) }’ # Wait for async activity
def waitmove ’{ user_waitmove; wait(1) }’ # Wait for moving to end
def waitcount ’{ user_waitcount; wait(2) }’ # Wait for counting to end
def chk_move ’(wait(0x21) || USER_CHK_MOVE)’
def chk_count ’(wait(0x22) || USER_CHK_COUNT)’
def chk_acq ’(wait(0x24) || USER_CHK_ACQ)’
def w ’{ waitall; beep }’ # Wait, and be audible when done

Basic Utility Macros

These straightforward macros combine a number of built-in functions and commands
to provide a higher level of functionality with minimal input. First, here is their
usage:

help [topic] # Display help files
config # Edit hardware configuration
onsim # Turn on simulate mode
offsim # Turn off simulate mode
debug [value] # Select debugging categories
bug # Mail a bug report
whats object # Identify the object

gpset variable value # Comment if a variable has changed

Here are the definitions for some:
Examine help file, use default if no argument.
def help ’

if ($#)
gethelp("$1");

else {
local t
for (t="help";;)

if (gethelp(t) || (t = input("\nSubject? ")) == "")
break

}
’

128 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

View (and modify), then reread configuration file.
Use -s flag if in simulate mode. Re-order motor numbers
with _assign. Check for monochromator mnemonics.
def config ’

wait(-1)
user_waitall
sync
unix(sprintf("%s/edconf %s %s/%s",\

SPECD, set_sim(-1)? "-s":"", SPECD, SPEC))
reconfig
user_config
_assign
_assign_mono

’
def user_config ’’

Turn simulate mode on. Comment on printer and file if changed.
def onsim ’{

local t

if (!(t = set_sim(1))) { qcomment "Simulate mode ON" }
printf("Simulate was %s, is now %s.\n", t? "on":"off",\

set_sim(-1)? "ON":"OFF")
}’
Turn simulate mode off.
def offsim ’{

local t

if (t = set_sim(0)) { qcomment "Simulate mode OFF" }
printf("Simulate was %s, is now %s.\n", t? "on":"off",\

set_sim(-1)? "ON":"OFF")
}’

Easy way to set the debug level.
+arg adds bits to DEBUG. -arg removes them.
def debug ’{

local t

if ($# == 0) {
gethelp("debug")
t = input(sprintf("\nDebug value (%d)? ", DEBUG))

} else
t = "$*"

if (index(t, "+")) DEBUG |= 0+t
else if (index(t, "-")) DEBUG &= ˜(0-t)
else DEBUG = 0+t

}’

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 129

Send a bug report to the administrator.
def bug ’

print "The mail utility will be run for you. Describe your"
print "problem to the administrator. When you are done, type ˆD."
{
local s
s = unix(sprintf("%s -s \"Bug from %s\" %s", MAIL, USER, ADMIN))
printf("Bug report %ssent to %s.", s? "not ":"", ADMIN)

}
’

Set something and comment if it has changed.
def gpset ’

if ($1 != $2) {
comment "$2 reset from %g to %g" "$2,$1"
$2 = $1

}
’

Reading From Command Files

do command_file # Run a command file
qdo command_file # Run a command file without echo
newmac # Reread standard command files

Since the do and qdo macros have nearly identical functionality, the commands for
both are placed in a single macro named _do . This macro implements special func-
tions, such as letting a dot stand for the previous command file or searching for a
command file first in the current directory and then in a special command file direc-
tory.

"do" a command file.
def do ’_do $* do’

Quietly "do" a command file.
def qdo ’_do $* qdo’

Run a command file. If not in current directory, look for
file in DO_DIR. Save file name in DOFILE so "do ." works.
def _do ’

if ($# != 2 || ("$2" != "do" && "$2" != "qdo")) {
print "Usage: do file"
print " qdo file"
exit

}
if ("$1" == "." && DOFILE == "") {

print "No previous do file."
exit

}

130 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

if ("$1" != ".") {
DOFILE = "$1"
if (DO_DIR != "." && unix(sprintf("test -r %s", DOFILE))) {

local t

t=sprintf("%s/%s", DO_DIR, DOFILE)
if (!unix(sprintf("test -r %s", t)))

DOFILE = t
}

}
if (!unix(sprintf("test -r %s", DOFILE))) {

qcomment "do %s" DOFILE
$2file(DOFILE)

} else {
printf("Can\’t read command file \"%s\".\n", DOFILE)
exit

}
’

The newmac macro rereads the standard macro files that reside in SPECD the auxiliary
file directory (usually /usr/lib/spec.d). Invoking newmac is useful if a new version of
the standard macros has been installed but you do not want to start fresh, or if you
have somehow corrupted the definition of a standard macro and want to get back the
original definition.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 131

Saving To Output Devices

comment format args # Send a comment to output devices
qcomment format args # Send comment to file and printer
prcmd command # Print the output of a command
savcmd command file # Save a command to a file
savmac macro_name file # Save a macro to a file

Print a comment on the screen, printer and data file.
def comment ’

printf("\n%s. $1.\n", date(), $2)
qcomment "$1" "$2"

’
Print a comment on the printer and data file.
def qcomment ’

if (PRINTER != "")
fprintf(PRINTER,"\n%s. $1.\n", date(), $2)

if (DATAFILE != "")
fprintf(DATAFILE, "#C %s. $1.\n", date(), $2)

’

Have output of any command sent to the printer.
Commands are all on one line to avoid outputting prompts.
def prcmd ’onp;offt;printf("\n%s\n","$*");ont;$*
offp’

Have output of any command sent to a file.
def savcmd ’

if ($# != 2) {
print "Usage: savcmd command filename"
exit

}
on("$2");offt;printf("\n%s\n","$1");ont;$1
close("$2")

’

Save a macro definition to a file.
def savmac ’

if ($# != 2) {
print "Usage: savmac macro_name filename"
exit

}
on("$2"); offt
prdef $1
ont; close("$2")

’

132 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Star t-up Macros
These macros ask for all the initialization information that may be needed by the
other macros.

startup # Sets things up to start experiment
newsample # Gets title and data file for experiment
newfile [name [num]] # Sets up a data file
starttemp # Asks for temperature control parameters
setscans # Asks for scan options
setplot # Asks for plotting options
startgeo # Queries user for all geometry parameters

save [file] # Saves important variables to a file
savegeo # Used by "save", saves geometry parameters
saveusr # Used by "save", user defined

The startup macro prompts for values for a number of global variables and also
invokes all the other initialization macros, leading to more than a screenful of ques-
tions. You can, however, always jump back to command level by typing the interrupt
character (ˆC) if you do not need to change items at the bottom of the list. Be care-
ful, though, since some of the initialization macros, (setplot , for example) don’t
save the entered information until all their questions are answered.

def startup ’
printf("\n(newsample)")
newsample
{
local t
t = PRINTER != "" && PRINTER != "/dev/null"
if (yesno("\nUse a printer for scan output", t)) {

PRINTER = getval("Printer device",PRINTER)
if (index(PRINTER,"/")==0)

PRINTER = sprintf("/dev/%s",PRINTER)
if (open(PRINTER))

PRINTER = "/dev/null"
} else

PRINTER = "/dev/null"
}
if (substr(PRINTER,1,5) != "/dev/")

PRINTER = sprintf("/dev/%s",PRINTER)
if (open(PRINTER))

PRINTER = "/dev/null"
newfile
DO_DIR = getval("\nCommand file directory",DO_DIR)
COUNT = getval("Default count time for ct and uct",COUNT)
UPDATE = getval("Update interval for umv, uct, etc. in seconds",UPDATE)
if (whatis("starttemp")>>16)

printf("0arttemp)")
starttemp

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 133

setscans
setplot
startgeo

’

In the standard distribution, starttemp has a null definition.

The newfile macro creates, opens or reopens standard spec data files. The filename
and scan number may be given as arguments. Otherwise, you are asked for the
information. If you have a directory named data in you current directory, and there
are no / characters in the file name you give, the data file will be placed in the data
directory. If the file already exists, new scans will be appended to the file. The exist-
ing file is not removed.

The startgeo macro is defined differently for various geometries, but should query
the user for values for all the relevant geometry parameters.

The save macro is not really an initialization macro, but it creates a file that can be
used for initialization. The purpose of the macro is to save all the important global
variables in a file that can be run as a command file at a later time to restore the val-
ues of those variables. For example, if the user anticipates starting fresh with a new
version of the software, having a file created by the save macro will simplify creating
a new program state.

Save current globals to a save file
def save ’{

local f

if ($# == 0)
f = getval("File for saving globals", "saved")

else if ($# == 1)
f = "$1"

else {
print "Usage: save [filename]"
exit

}
unix(sprintf("if test -s %s ; then mv %s %s.bak ; fi", f, f, f))
on(f); offt
printf("PRINTER=\"%s\"\n",PRINTER)
savegeo
saveusr
ont; close(f)
qcomment "Globals saved in \"%s\"" "f"
printf("Type \"do %s\" to recover.\n", f)

}’

The macro savegeo saves all the geometry parameters for the particular configura-
tion. You can define the macro saveusr to save whatever else is desired.

134 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Motor Macros
mv motor pos # Move a motor
mvr motor pos # Move a motor, relatively
mvd motor dial_pos # Move a motor to a dial position
tw motor inc # Tweak a motor, interactively

umv motor pos # Move while updating screen
umvr motor pos # Move while updating screen

wa # Show positions of all motors
lm # Show limits of all motors
wm m1 m2 ... # Show positions and limits of motors
uwm m1 m2 ... # Show positions while motors are moving

set motor pos # Set user angle for a motor
set_dial motor pos # Set dial angle for a motor
set_lm motor low high # Set user limits for a motor

an tth_pos th_pos # Move two theta and theta
pl chi_pos phi_pos # Move chi and phi (four-circle)
uan tth_pos th_pos # Move while updating screen
upl chi_pos phi_pos # Move while updating screen

The following macro moves a single motor, adding a comment to the printer that the
motor was moved:

Move a single motor
def mv ’_mv $*; move_poll’
def umv ’_mv $*; _update1 $1’ # "update" version of mv
def _mv ’

if ($# != 2) {
print "Usage: mv motor position"
exit

}
_check0 "$1"
waitmove; getangles; A[$1]=$2
if (PRINTER != "")

fprintf(PRINTER,"\nmv $1 %g\n", A[$1])
move_em

’

In mv , as in all the macros that move motors, the move_em macro is invoked, rather
than the move_all command. Normally, move_em is defined as

def move_em ’
user_premove
move_all
user_postmove

One can define the user_premove and/or user_postmove macros to take into account
special conditions. For example, to check for limits that depend on the relative posi-
tion of motors, one could define user_premove as

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 135

def user_premove ’
if (fabs(A[tth] - A[th]) > 10) {

print "Move exceeds Theta - Two Theta relative limit."
exit

}
move_all

’

The set macro changes the offset between user and dial units.
Define a new motor position
def set ’

if ($# != 2) {
print "Usage: set motor new_user_value"
exit

}
{
local old
_check0 "$1"
waitmove; getangles
old = A[$1]
if (chg_offset($1, $2))
exit

getangles
if (old != A[$1]) {
comment "%s reset from %g to %g" "motor_name($1), old, A[$1]"

} else
print "No change."

}
’

The set_dial macro changes the dial position of the motor, which means a change to
the contents of the motor controller register. set_dial refuses to set the dial beyond
the current software limits for the motor. set_dial also changes the offset to main-
tain the prior value of the user angle. These two macros document the change in the
data file and on the printer.

The set_lm macro converts the user-unit arguments to dial units for the call to
set_lim() .

136 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Change a motor limit
def set_lm ’

if ($# != 3) {
print "Usage: set_lm motor low high"
exit

}
{

_check0 "$1"
if (!set_lim($1, dial($1, $2), dial($1, $3))) {

onp
printf("\n%s limits set to %g %g (dial units).\n",\

motor_name($1), get_lim($1, -1), get_lim($1, +1))
offp

}
}

’

The macros in the above list that begin with a u continuously read motor positions
from the controller and show the positions on the screen. The frequency of screen
updates is set by the global variable UPDATE , which is used as an argument to the
sleep() function. Setting UPDATE=.25 places a 1/4 second pause between updates.
The umv macro first calls _mv and then calls the internal _update1 macro. The other
updated-move macros are defined similarly.

def umv _’mv $*; _update1 $1 ’ # "update" version of mv

Displays updated position of 1 motor while it is moving
def _update1 ’

if (chk_move)) {
printf("\n%10.9s\n", motor_name($1))
while (wait(0x22)) {

getangles
printf("%10.4f\r", A[$1])
sleep(UPDATE)

}
getangles
printf("%10.4f\n", A[$1])

}
’

The technique for displaying status information about all the motors is a little com-
plicated. spec places no restriction on what order the motors are assigned to the con-
troller, but does recognize that there is a preferred order for displaying motor infor-
mation. To this end, the macros use an array mA[] which contains reordered motor
numbers. The four-circle macro source file contains the following code, which is exe-
cuted when the command file is read and when the config macro is run.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 137

Conventionally, the first four motors are tth, th, chi, phi.
The following code guarantees this.
def _assign ’{

local i j
mA[0]=tth
mA[1]=th
mA[2]=chi
mA[3]=phi
for (i = 4, j = 0; i < MOTORS; j++) {

if (j == tth || j == th || j == chi || j == phi)
continue

mA[i++] = j
}

}’

Similar code is contained in the macro source files for the other geometries.

An internal macro named _mo_loop exists to loop through all the motors printing
selected fields. Its use is best illustrated by example. First here is its definition:

Looping routine used in many macros.
Normally k is set to MOTORS, but can be set to something else, e.g., 4
(Kludge with printf(" ") avoids auto linefeed on 80th column.)
def _mo_loop ’{

local s
for (j = i; j < i + 8 && j < k; j++)

if (motor_name(mA[j]) != "unused") {
s = s sprintf("%$1", $2)
if (j < i + 7)

s = s " "
}

print s
}’

It is within this macro that motors named unused are not used in printing motor
information.

The wa macro that displays information for all motors is typical of a macro that calls
the _mo_loop macro.

138 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Where - all motors
def wa ’

waitmove; get_angles
onp
printf("\nCurrent Positions (user, dial)\n")
{

local i j k
for (i = 0, k = MOTORS; i < k; i += 8) {

_mo_loop 9.9s "motor_name(mA[j])"
_mo_loop 9.9s "motor_mne(mA[j])"
_mo_loop 9.4f "A[mA[j]]"
_mo_loop 9.4f "dial(mA[j], A[mA[j]])"

}
}
offp

’

The first argument for _mo_loop is a printf() field specification, the second argu-
ment is the field value. The field values use the mA[] array to reorder the motor
numbers.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 139

Counting Macros
ct [time] # Count, then show_cnts
count [time] # Count for time
show_cnts # Count, then display results
uct [time] # Updated counting

When time is positive, counting is to seconds. When time is negative, counting is to
monitor counts. If the counting macros are invoked without an argument, the count
time used is that contained in the global variable COUNT .

Counting in spec combines timing generators and scalers. Three scaler channels are
normally used in the standard macros. The first channel takes an accurate clock
input (normally at 1 KHz), the second takes the monitor input, and the third takes
the detector.

The scaler channels identifying the various inputs are determined by the values of
the global constants, sec , mon and det . Their default values are 0, 1 and 2, respec-
tively, matching the recommended hardware cabling. If you do not connect your
counting sources to the default scaler channels, you must explicitly assign new val-
ues to sec , mon and det for the standard counting macros to work properly.

The additional global variables MON and DET are then set to the channels that are to
be treated as the monitor and detector for particular scans, normally mon and det .
If, while doing a line-up scan of a motor on which the monitor is mounted, you would
want the monitor counts to be plotted as a function of the motor position, enter
DET=mon before doing the scan. Do not forget to reassign DET=det at the end of the
scan.

The global variable COUNT is set to a default count time (normally 1 second). If the
macro ct is invoked without arguments, counting will last for the duration given by
COUNT .

A user calls "ct" to count for some interval and display results
def ct ’{

rdef cleanup \’
undef cleanup
onp; show_cnts; offp

\’
waitmove
count_em $*
waitcount
undef cleanup
onp; show_cnts; offp

}’

140 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

"count" is the basic macro to count to monitor or to time.
It runs the clock and reads the scalers.
def count ’{

waitmove
if ($1) for (;;) {

count_em $1
waitcount
get_counts
chk_beam

}
if (S[sec] && MON >= 0)

MON_RATE = S[MON]/S[sec]
}’
The macro "show_cnts" reads the scalers and displays the results.
def show_cnts ’{

local i

get_counts
printf("\n%s\n\n", date())
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12s = %g%s\n", cnt_name(i), S[i], \

i != sec && S[sec]? sprintf(" (%g/s)", S[i] / S[sec]):"")
}’

Updated counting is done with the uct macro,
def uct ’{

waitmove
count_em $*
if (chk_count) {

local i
printf("\n")
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12.12s ",cnt_name(i))

printf("\n")
while (chk_count) {

get_counts
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12g ",S[i])

printf("\r")
sleep(UPDATE)

}
get_counts
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12g ",S[i])

printf("\n")
}

}’

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 141

Plotting Macros
At present, spec’s plotting is done entirely at the macro level and does only character
plots on the screen and printer. Several screen plotting macros are defined for vari-
ous types of terminals.

setplot [mode] # Select plotting options
plot # Plot data on printer
rplot # Plot updated data at each point of scan
splot # Plot data on screen
pts # List current data on the screen
lp_plot # Primitive 132-column wide plot for printers

plot_res # Show results after scans
splot_res # Show results on screen plot
rplot_res # Show results on updated plot during scans

The setplot macro defines the plot macro, depending on your choices of plot modes.

The scan_plot macro is invoked within the looping portion of all the scans.

The setplot macro assigns values to the global variable, PLOT_MODE , according to
the values defined in the following table:

Bit Value Description
1 Do updated plotting during scans.
2 Do screen plot after scan.
4 Do printer plot after scan.
8 Scale x-axis of screen plots to fit width of scan.

16 Force y-axis minimum to be zero.
32 Use logarithmic y-axis.
64 Do simple background subtraction

128 Use high-resolution plotting device
256 With high-res, don’t use large dots
512 With high-res, don’t connect points with lines

1024 With high-res, don’t draw error bars

The scan_plot macro is called for each point of a scan, while plot is called at the
end of each scan.

The splot macro draws a screen plot. The rplot macro is called to redraw the plot
with minimal updating during data accumulation.

142 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Reciprocal Space Macros
The following macros are general and applicable to most geometry configurations.
Macros special to the four-circle geometry configuration are described in the Four-
Circle Reference that follows this guide.

ca H K L # Display calculated positions for H K L
cal H K L # As above, but don’t reset positions
ci tth th chi phi # Display calculated H K L for angles
br H K L # Move to H K L
mk H K L # Move to H K L
ubr H K L # Move to H K L while updating screen
umk H K L # Move to H K L while updating screen
mi ALPHA BETA # Move to ALPHA BETA
wh # Display H, K, L, tth, th, chi, phi, etc.
pa # Display geometry parameters

The difference between ca and cal is that the first macro restores the A[] angles and
H , K and L to the current diffractometer position, while the second macro leaves them
at the calculated values.

There is no difference between the br and mk macros, except their names.

The ubr and umk macros continuously read the motor positions from the controller
and show the positions on the screen. The frequency of updates is set by the global
variable UPDATE .

Go to a Bragg position
def br ’_br $*; move_poll’
def _br ’

if ($# != 3) {
print "Usage: br H K L"
exit

}
waitmove; { H=$1; K=$2; L=$3 } getangles; calcA
onp; offt; printf("\nbr %g %g %g\n", H, K, L); offp; ont
move_em

’

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 143

Calculate motor positions for a given H, K, and L
def cal ’

if ($# != 3) {
print "Usage: cal H K L"
exit

} ;
{H = $1; K = $2; L = $3 } calcA; calcHKL
onp
printf("\nCalculated Positions:\n")
_var
offp

’
As above but reset positions to diffractometer positions
def ca ’

if ($# != 3) {
print "Usage: ca H K L"
exit

} ;
{H = $1; K = $2; L = $3 } calcA; calcHKL
onp
printf("\nCalculated Positions:\n")
_var
offp
waitmove; getangles; calcHKL

’

Where - reciprocal and real space
def wh ’

waitmove; getangles; calcHKL
onp
_var
offp

’

A macro called by "wh", "ca" and "ci" to display important
geometry quantities. (Four-circle version.)
def _var ’

printf("\nH K L = %.5g %.5g %.5g\n", H, K, L)
printf("ALPHA = %.5g BETA = %.5g", ALPHA, BETA)
printf(" AZIMUTH = %.5g LAMBDA = %g\n\n", AZIMUTH, LAMBDA)
_mot 4

’

144 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Scan Macros
The following sections summarize the usage of the standard scans in spec. This dis-
cussion is followed by a description of macros to customize the scan output sent to the
printer and data file. Refer to page154 for a detailed discussion of a single-motor
scan.

All the scans use the same basic invocation syntax. For example, the single motor,
absolute-position scan is invoked as

ascan motor start finish intervals time

The range of a scan is specified by the starting position start , the final position fin-
ish and the number of intervals intervals of the scanned parameters. Thus

ascan tth 26 28 20 60

would start with the tth motor at 26°, and move the motor to 28°, using 20 intervals
of 0.1°. The total number of points scanned is one more than the number of intervals,
in this case, 21 points. The time per point time , if a positive number, indicates
counting to seconds. In the above example, each point takes 60 seconds. Using a
negative time indicates counting to monitor counts.

Scan Miscellany

resume # Restart an aborted scan
setscans # Set scan-mode options

If a scan is halted by typing the interrupt character (ˆC), or because of some other
error such as hitting a motor limit, you can normally restart the scan by typing
resume . You must not have changed the value of any of the internal scan variables
in the meantime. If you use resume to continue a relative position scan, such as lup
or dscan , the scanned motors will not be returned to the center point when the scan
ends, as they otherwise would be.

You also have the option to control how the scan data is displayed on the screen as it
is taken. An option to the setscans macro allows the motor positions and scalers
contents to be displayed while they are changing during a scan. The rate of updates
is set by the UPDATE global variable, just as with the umv and uct macros. An option
to the setplot macro, presented earlier, allows real-time plots of the data points to
be displayed as they are measured.

Another option selected in the setscans macro lets you choose whether to do prescan
motor limit checks with reciprocal space scans. The purpose of these checks is to
avoid running into a software motor limit in the middle of a scan. For regular motor

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 145

scans, the limit checks are done only at the scan endpoints. For reciprocal space
scans, the motor positions do not necessarily change monotonically and so the motor
limits must be checked at each scan point. Since this checking requires a time-con-
suming loop at the macro level, you may choose to disable the feature if you are confi-
dent your reciprocal space scans will not send a motor outside the ranges defined by
software limits.

Motor Scans

ascan motor start finish intervals time
a2scan m1 s1 f1 m2 s2 f2 intervals time
a3scan m1 s1 f1 m2 s2 f2 m3 s3 f3 intervals time
mesh m1 s1 f1 intervals1 m2 s2 f2 intervals2 time

lup motor start finish intervals time
dscan motor start finish intervals time
d2scan m1 s1 f1 m2 s2 f2 intervals time
d3scan m1 s1 f1 m2 s2 f2 m3 s3 f3 intervals time
th2th tth_start_rel tth_finish_rel intervals time

The argument motor (and m1 , m2 and m3) is a motor number or mnemonic, such as
th , tth , chi , or phi . ascan , a2scan and a3scan are single-, two- and three-motor
absolute-position scans. mesh is a nested two-motor scan, where the first motor scans
through its range at each point of the second motor’s scan. lup (or equivalently
dscan), d2scan and d3scan are single- and two- and three-motor relative position
scans. The starting and finishing positions are given relative to the current position,
and the motors are returned to their starting position at the end of the scan. These
relative position scans are defined in terms of the absolute-position scans.

The th2th macro is a special case of the d2scan that will scan the tth and th motors,
with th moving half the range of tth . Its definition is,

def th2th ’
if ($# != 4) {

print "Usage: th2th tth_start_rel tth_finish_rel intervals time"
exit

}
d2scan tth $1 $2 th ($1)/2 ($2)/2 $3 $4

’

146 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Basic Reciprocal Space Scans

hscan start_H finish_H intervals time
kscan start_K finish_K intervals time
lscan start_L finish_L intervals time

hklscan s_H f_H s_K f_K s_L f_L intervals time
hklmesh Q1 s_Q1 f_Q1 intervals1 Q2 s_Q2 f_Q2 intervals2 time

The first three scans are special cases of hklscan , as in
def hscan ’

if ($# != 4) {
print "Usage: hscan start finish intervals time"
exit

}
waitall; getangles; calcHKL
hklscan $1 $2 K K L L $3 $4

’

hklmesh does a grid scan of two reciprocal coordinates, where Q1 and Q2 are literally
H , K or L , and Q1 ≠ Q2 .

A waitmove , getangles and calcHKL are done at the start of the scan to obtain the
current diffractometer position to determine the values of the unspecified coordinates
in hscan , kscan , lscan and hklmesh .

Special Reciprocal Space Scans

klradial angle start_radius finish_radius intervals time [H=expr]
hlradial angle start_radius finish_radius intervals time [K=expr]
hkradial angle start_radius finish_radius intervals time [L=expr]

klcircle radius start_angle finish_angle intervals time [H=expr]
hlcircle radius start_angle finish_angle intervals time [K=expr]
hkcircle radius start_angle finish_angle intervals time [L=expr]

The first three scans trace a path that would form a radial cut if projected on to the
K-L, H-L or H-K planes at the specified angle in degrees from the positive K, H or H
axes, respectively. start_radius and finish_radius specify the radial distance
from the origin. The unscanned coordinate will be reevaluated at each point accord-
ing to the optional expression in the last argument, which can be a function of the
other coordinates, for example, H=L/300 . Otherwise, the unscanned coordinate will
remain constant.

The second three scans differ only in that they trace out a circular arc in the pro-
jected plane at the radius given by the first argument. start_angle and fin-
ish_angle are the endpoints in degrees of the arc of the scan.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 147

Temperature Scans

Temperature scan
tscan start finish intervals time [sleep]

Delta temperature scan
dtscan start finish intervals time [sleep]

These two macros scan the temperature setpoint. The macro settemp (see the tem-
perature control macros, described below) is called to change the setpoint. A call of
the sleep() function is done after calling settemp , but before counting, if the
optional argument sleep is greater than zero.

Po wder Mode

setpowder # Select "powder" mode
setpowder off # Turn "powder" mode off
setpowder motor full_width # Specify powder motor and width

Powder mode enables you to measure intensities while a motor is scanned through
some range. When turned on, powder mode affects all scans where motors are
moved. If invoked without arguments setpowder prompts for the powder motor and
for the full width of the rocking movement to take place at each point of the scan.
Invoked with the off argument, scans return to their normal mode.

Customizing Scan Output

To allow you to customize the scan headers and the information saved with each data
point, several macros are available for redefinition. Their default definitions are:

def Pheader ’’ # Printer header
def Fheader ’’ # File header
def Plabel ’""’ # Printer/Video column labels
def Pout ’""’ # Printer/Video output at each point
def Flabel ’""’ # File column labels
def Fout ’""’ # File output at each point

Four of these must be defined as strings — in the default case, null strings. Here are
examples of how these macros might save temperature set point and measurement
information on the output devices.

148 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

def Pheader ’printf("\n Setpoint = %g (%g C)\n", TEMP_SP,DEGC_SP)’
def Fheader ’_cols++;printf("#X %gKohm (%gC)\n",TEMP_SP,DEGC_SP)’
def Plabel ’sprintf("%7.7s %7.7s ","T-set","T-degC")’
def Pout ’sprintf("%7.5g %7.5g ",TEMP_SP,DEGC)’
def Flabel ’"DegC "’
def Fout ’sprintf("%g ",DEGC)’

The Pheader and Fheader macros must print newline-terminated lines. More than
one line is permitted, however. Besides adding scan header information to the data
file, Fheader also adjusts the value of the global variable _cols , which is used to
indicate the number of data columns in the data file. In the example shown, the Fla-
bel and Fout definitions add one column to the data file, so _cols is incremented by
one. The Plabel and Pout macros add columns to the printer (and screen) output.
The columns in Flabel should be separated by double spaces (the data file conven-
tion). The columns in the other headers should be separated by single spaces. In
each case, the spaces come after the label.

The Ftail macro is available for adding scan results to the data file at the conclusion
of a scan. By default Ftail is defined as nothing,

def Ftail ’’ # File tail

You might define it to be
def Ftail ’printf("#R %d %g %g %g %g %g %g\n", \

SCAN_N, pl_xMAX, pl_MAX, pl_FWHM, pl_CWHM, pl_COM, pl_SUM);’

where the values being printed are from the pl_anal() function described on page
##. The #R characters begin the data file control line for scan results.

Tempera ture Control Macros
te # Read or set the temperature
settemp # Set the temperature
measuretemp # Measure the temperature
showtemp # Show temperature parameters
teramp # Ramp the temperature

Methods for handling temperature control and other experimental parameters are
likely to vary greatly from lab to lab and experiment to experiment. You may be able
to modify these standard macros to suit your specific needs.

The temperature control model assumed by these macros uses two independent
instruments: one instrument to control the temperature and one instrument to mea-
sure the temperature. The following global variables are used by the macros:

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 149

TEMP_SP The set point of the controller in ohms, volts, etc.
T_LO_SP The lower limit for the controller set point.
T_HI_SP The upper limit for the controller set point.
DEGC_SP The temperature from which the set point is derived.
TEMP_CS The value of the temperature sensor in ohms, volts, etc.
DEGC The measured temperature.

The macro below displays the current set point and measured temperature.
Display temperature parameters
def showtemp ’

measuretemp
printf("Temperature Setpoint = %g (%gC)\n",TEMP_SP,DEGC_SP)
printf(" Measured = %g (%gC)\n",TEMP_CS,DEGC)

’

You must supply the macro measuretemp . It should read TEMP_CS from the tempera-
ture sensor and convert it to DEGC . Sample measuretemp macros are given below.

The te macro is the one you would use most often to display or set the temperature
set point.

Simple read or set temperature
def te ’

if ($# == 1) {
settemp $1
qcomment "Temperature Setpoint at %g" "TEMP_SP"

}
onp; showtemp; offp

’

If invoked without arguments, it simply displays the current temperature parame-
ters. Otherwise it invokes the settemp macro. The settemp macro checks its argu-
ment against the set point limits and then calls the _settemp macro, which you must
supply.

Assign the temperature setpoint
def settemp ’

if ($# != 1) {
print "Usage: settemp set_point"
exit

} else {
local _1
_1 = $1
if (_1 < T_LO_SP || _1 > T_HI_SP) {

printf("Temp limits are %g to %g.\n",T_LO_SP,T_HI_SP)
exit

}
TEMP_SP = _1
_settemp

150 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

}
’

Here are examples of _settemp macros from several installations (the symbol _1 is
defined in settemp):

Write setpoint to a Lakeshore 82C Controller on GPIB bus
def _settemp ’

gpib_put(12, sprintf("S%6.4f", _1))
’
Write setpoint to home-made GPIB device used at MIT
def _settemp ’{

local _s
_s = int(32767*_1/10)
gpib_put(4, sprintf("%c%c%c%c\160\200",\

0x80|(_s &0xF), 0x90|((_s>>4)&0xF),\
0xA0|((_s>>8)&0xF), 0xB0|((_s>>12)&0xF)))

}’
Write setpoint to a home-made device used with CAMAC at Harvard
def _settemp ’

ca_put(bcd(10000*_1), 0, 0)
’

Here are examples of different measuretemp macros:
Read parameters from a Lakeshore 82C Controller on GPIB bus
def measuretemp ’{

local _s
gpib_put(12,"W0")
_s=gpib_get(12)
TEMP_SS=substr(_s,1,6)
TEMP_CS=substr(_s,9,6)*100
RtoT_0 DEGC TEMP_CS
TEMP_SP=substr(_s,17,6)
RtoT_0 DEGC_SP TEMP_SP

}’
Read setpoint from CAMAC and temperature from GPIB device
def measuretemp ’

TEMP_CS = gpib_get(1)/1000
RtoT_0 DEGC TEMP_CS
TEMP_SP = dcb(ca_get(0, 0))/10000
RtoT_0 DEGC_SP TEMP_SP

}’

Keep in mind that measuretemp is also called at each iteration of the standard scan
macros.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 151

The macro RtoT_0 , used above, is one of several in the standard package that convert
between degrees C and kilohms for common thermistors:

Temperature to kohms
def TtoR_0 ’

local _k # YSI 44011 (100kohm @ 25C) 20 to 120 C
$1 = exp(-11.2942 +5.3483e3 /(_k = ($2) + 273.15)\

-1.42016e5 /(_k*_k) -1.172e7 /(_k*_k*_k))
’
Kohms to temperature
def RtoT_0 ’

local _l # YSI 44011 (100kohm @ 25C) 20 to 120 C
$1 = (1/(+2.2764e-3 +2.20116e-4 *(_l = log($2))\

+2.61027e-6 *_l*_l +9.02451e-8 *_l*_l*_l) - 273.15)
’

(The four parameters in each equation were obtained by fitting a table of values sup-
plied by the manufacturer of the thermistors. No guarantees are made about the
accuracy of the fitted parameters.)

The following macro will gradually change (or ramp) a temperature controller to a
new set point. If the ramp time is greater than 500 seconds, the temperature is
changed every 10 seconds, otherwise the temperature is changed every 2 seconds.

Read or set or ramp the temperature
def teramp ’{

if ($# == 1) {
te $1

} else if ($# == 2) {
local _i _s1 _f1 _d1 _rtime _stime
_f1 = $1
_rtime = $2
_stime = _rtime < 500? 2:10
_s1 = TEMP_SP
_d1 = (_f1 - _s1) / _rtime * _stime
qcomment "Ramp Temp Setpoint from %g to %g" "_s1,_f1"
for (_i=0; _i<=_rtime; _i+=_stime, _s1 += _d1) {

settemp _s1
measuretemp
printf("Set=%7.4f Meas=%7.4fC\r",TEMP_SP,DEGC)
sleep(_stime)

}
showtemp

} else {
print "Usage: teramp set_point or teramp set_point time"
exit

}
}’

152 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Pr inter Initializa tion Macros
These macros send out the particular character sequences that put various printers
into compressed mode to fit 132 columns of text on 81⁄2" wide paper.

Put DecWriter into compressed mode
def initdw ’onp; offt; printf("\033[4w"); offp; ont’

Put Epson printer into compressed mode
def initfx ’onp; offt; printf("\017"); offp; ont’

Put Okidata printer into compressed mode
def initoki ’onp; offt; printf("\035"); offp; ont’

NEC P6/P7 printer, put into compressed mode
def initnec ’onp; offt; printf("\033!\004"); offp; ont’

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 153

The Scan Macros In Detail
All the scan macros in the standard package share a similar structure. To keep the
format of the output sent to the data file, printer and screen consistent, common
parts of each scan are defined as macros that are called by all the scans. For exam-
ple, the scan_head macro is called by each scan to write scan headers on all the out-
put files and devices. Certain macros are shared by all the scans for another reason.
Special operating modes or options are implemented by redefining shared macros.
For example, the scan_move macro, called within the looping portion of the scans, is
normally defined as _move , which is:

def _move ’move_em; waitmove; getangles; calcHKL’

In powder mode, scan_move is defined as _pmove , a slightly more complicated macro,
designed to move the designated powder averaging motor some width on alternating
sides of the center trajectory of the scan,

def _pmove ’
if (_stype&2)

_cp = A[_pmot]
A[_pmot] = _cp + _pwid/2
_pwid = -_pwid
move_em; waitmove; getangles; A[_pmot] = _cp; calcHKL

’

The following paragraphs explain in detail the construction of the scan macros, using
the single-motor scan, ascan , as an example. Here is its definition:

def ascan ’
if ($# != 5) {

print "Usage: ascan motor start finish intervals time"
exit

}
_check0 "$1"
{ _m1 = $1; _s1 = $2; _f1 = $3; _n1 = int($4); _ctime = $5 }

if (_n1 <= 0) {
print "Intervals <= 0"
exit

}

_bad_lim = 0
_chk_lim _m1 _s1
_chk_lim _m1 _f1
if (_bad_lim) exit

HEADING = sprintf("ascan %s %g %g %g %g","$1",$2,$3,$4,$5)
_d1 = (_f1 - _s1) / _n1++
_cols=4

154 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

X_L = motor_name(_m1)
_sx = _s1 ; _fx = _f1
_stype = 1|(1<<8)
FPRNT=sprintf("%s H K L", motor_name(_m1))
PPRNT=sprintf("%8.8s", motor_name(_m1))
VPRNT=sprintf("%9.9s", motor_name(_m1))
scan_head
def _scan_on \’
for (; NPTS < _n1; NPTS++) {

A[_m1] = _s1 + NPTS * _d1
scan_move
FPRNT=sprintf("%g %g %g %g",A[_m1],H,K,L)
PPRNT=sprintf("%8.4f",A[_m1])
VPRNT=sprintf("%9.4f",A[_m1])
scan_loop
pl_put(NPTS, A[_m1], S[DET])
scan_plot

}
scan_tail
\’
_scan_on

’

In ascan , as in all scans, the first thing to do is to check the number of arguments,
$# , and if incorrect, print a usage message:

if ($# != 5) {
print "Usage: ascan motor start finish intervals time"
exit

}

Next, the _check0 macro is called,
_check0 "$1"

as it is whenever a motor mnemonic is used as an argument in the standard macros.
The macro checks its argument against all valid motor mnemonics and motor num-
bers. The purpose is to prevent unintentionally sending motors into motion if the
user mistypes a mnemonic. The definition of _check0 is

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 155

def _check0 ’{
local _i

for (_i = 0; _i <= MOTORS; _i++)
if (_i == MOTORS) {

print "Invalid motor name: $1"
exit

} else if ($1 == _i) {
if ("$1" != motor_mne(_i) && "$1" != _i) {

print "Invalid motor name: $1"
exit

} else
break

}
’

Next in ascan , the global variables used in the scan are initialized from the argu-
ments.

{ _m1 = $1; _s1 = $2; _f1 = $3; _n1 = int($4); _ctime = $5 }

The global variables being assigned are shared by all the scans.

Next in ascan , a check is made to ensure the number of intervals is positive.
if (_n1 <= 0) {

print "Intervals <= 0"
exit

}

The next four lines do a motor limit check before the start of the scan.
_bad_lim = 0
_chk_lim _m1 _s1
_chk_lim _m1 _f1
if (_bad_lim) exit

The _chk_lim macro sets the flag _bad_lim if the position given by the second argu-
ment is outside the limits of the motor given by the first argument.

def _chk_lim ’{
local _u _t

if ((_u = dial($1, $2)) < (_t = get_lim($1, -1))) {
printf("%s will hit low limit at %g.\n",motor_name($1),_t)
_bad_lim++

} else if (_u > (_t = get_lim($1, 1))) {
printf("%s will hit high limit at %g.\n",motor_name($1),_t)
_bad_lim++

}
}’

The prescan limit check is straightforward for simple motor scans. For reciprocal

156 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

space scans, the limit check must loop through all the points of the scan since the
motor positions are not necessarily monotonic functions of the scan variables.

Next in ascan , the global variable HEADING is initialized.
HEADING = sprintf("ascan %s %g %g %g %g","$1",$2,$3,$4,$5)

It is used in the scan headers written to the file, screen and printer, and records the
arguments with which the scan was invoked.

Next, some global scan variables are initialized.
_d1 = (_f1 - _s1) / _n1++
_cols=4
X_L = motor_name(_m1)
_sx = _s1 ; _fx = _f1
_stype = 1|(1<<8)

The _d1 variable is set to the step size for the scan. The number of intervals in _n1 is
incremented so its value will be the actual number of points. The _cols global vari-
able is set to the number of extra columns this scan will use in the data file. Here it
is four, for the motor position and values of H, K and L at each point.

X_L is set to the x-axis label to use on the plot of the scan. The globals _sx and _fx
are set to the endpoints of the x axis to be used in plotting the data on the screen dur-
ing the scan.

The variable _stype is treated as a two byte integer and holds a code representing
the current scan type. The low-order byte is a bit flag, while the high order byte con-
tains a number value. The expression 1|(1<<8) use the bitwise-or and the bitwise-
shift operators to put values in each byte. Currently, the following codes are used:

Code Type Of Scan High-Order Byte
1 motor number of motors
2 HKL nothing
4 temperature nothing

Next in ascan , the global variables FPRNT , PPRNT and VPRNT are given string values
to be used for file, printer and video-screen column labels particular to this scan.

FPRNT=sprintf("%s H K L", motor_name(_m1))
PPRNT=sprintf("%8.8s", motor_name(_m1))
VPRNT=sprintf("%9.9s", motor_name(_m1))

Each label contains the name of the motor being scanned, although printed with a
different field width. Different widths are used to fit the widths and number of fields
on the target devices. A challenge in constructing the scan macros is to fit all the
desired columns of information within a single line. All the scans must limit the line

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 157

length to 132 columns for output sent to the printer. (80-column printers must be
operated in compressed mode to make their carriages effectively 132 columns wide.)
The video screen is 80 columns wide. For the data file, there is no restriction on
width. Also for the data file, no attempt is made to line up items in columns.

Next in ascan is the scan_head macro, called to do the general initialization. All
scan macros call scan_head . The default definition of scan_head is

def scan_head ’_head’

where _head is defined as,
def _head ’

_scan_time
waitall; get_angles; calcHKL
NPTS = T_AV = MT_AV = 0
DATE = date()
TIME = TIME_END = time()
_cp = A[_pmot]
rdef cleanup "_scanabort"

DATA FILE HEADER
ond; offt
printf("\n#S %d %s\n#D %s\n",++SCAN_N,HEADING,DATE)
if (_ctime < 0)

printf("#M %g (%s)\n", -_ctime, S_NA[MON])
else

printf("#T %g (%s)\n", _ctime, S_NA[sec])
printf("#G")
for (_i=0; _i<NPARAM; _i++) printf(" %g", G[_i])
printf("\n")
printf("#Q %g %g %g\n", H, K, L)
{

local _i _j _k
for (_i = 0, _k = MOTORS; _i < _k; _i += 8) {

printf("#P%d ", _i/8)
_mo_loop .6g "A[mA[_j]]"

}
}
Fheader
printf("#N %d\n", _cols + 3)
printf("#L %s%s Epoch %s %s\n",FPRNT,Flabel,\

S_NA[_ctime < 0? sec:MON],S_NA[DET])
offd

PRINTER HEADER
onp; offt
printf("\n\f\nScan %3d %s file = %s %s user = %s\n%s\n\n",\

SCAN_N,DATE,DATAFILE,TITLE,USER,HEADING)
{

local _i _j _k
for (_i = 0, _k = MOTORS; _i < _k; _i += 8) {

158 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

printf(" ")
_mo_loop 9.9s "motor_name(mA[_j])"
printf(" ")
_mo_loop 9.6g "A[mA[_j]]"

}
}
Pheader
printf("\n # %11.9s %11.9s %11.9s %8.8s %8.8s %8.8s %s%s\n",\

"H","K","L",S_NA[sec],S_NA[MON],S_NA[DET],PPRNT,Plabel)
offp

TTY HEADER
ont
printf("\nScan %3d %s file = %s %s user = %s\n%s\n\n",\

SCAN_N,DATE,DATAFILE,TITLE,USER,HEADING)
printf(" # %s %8.8s %8.8s %10.10s%s\n",\

VPRNT,S_NA[DET],S_NA[MON],S_NA[sec],Plabel)
’

The commands at the beginning of _head ,
waitall; get_angles; calcHKL

insure the motors are stopped and positions current before proceeding. Next, _head
initializes some variables. NPTS is the loop variable in the scans that will run from 0
to _n1 . T_AV and MT_AV maintain the average temperature (from the global variable
DEGC) and the average monitor counts or time per point during the scan. DATE and
TIME are set to the current date and time. TIME_END is updated at each point with
the current time. The _cp variable is used in powder mode and is set to the center
position of the powder-average motor.

Next in the header macro, the real space motor positions and the reciprocal-space
position are made current with getangles and calcHKL . The cleanup macro is
defined to be the standard macro _scanabort . The macro named cleanup is special
as spec automatically invokes that macro when a user types ˆC or on any other error,
such as hitting motor limits, trying to go to an unreachable position or encountering
a syntax error in a macro. The definition of _scanabort is,

def _scanabort ’
_cleanup2
_cleanup3
comment "Scan aborted after %g points" NPTS
sync
undef cleanup

’

The _cleanup2 macro is defined for delta scans to move motors back to their starting
positions. The _cleanup3 macro is available to users for defining some kind of pri-
vate clean up actions.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 159

Finally, the headers are written to the file, printer and screen in turn. Included in
the headers are the user-defined Fheader , Flabel , Pheader and Plabel .

Returning back to ascan , the next part of the macro is the loop:
def _scan_on \’
for (; NPTS < _n1; NPTS++) {

A[_m1] = _s1 + NPTS * _d1
scan_move
FPRNT=sprintf("%g %g %g %g",A[_m1],H,K,L)
PPRNT=sprintf("%8.4f",A[_m1])
VPRNT=sprintf("%9.4f",A[_m1])
scan_loop
pl_put(NPTS, A[_m1], S[DET])
scan_plot

}
scan_tail
\’
_scan_on

The loop is implemented as a macro to enable the scan to be continued with the
resume macro. The relevant global variables are initialized outside the loop, so that
invoking _scan_on continues the scan where it had left off when interrupted. Here is
the resume macro.

def resume ’
if (NPTS >= (index(HEADING, "mesh")? _n1*_n2 : _n1)) {

print "Last scan appears to be finished."
exit

}
def cleanup "_scanabort"
comment "Scan continued"
_scan_on

’

The scan_move , scan_loop and scan_plot macros are invoked by all the scans. In
the loop, the motor array A[] is set to the target position for the scanned motor and
the motor is moved using the scan_move macro, normally defined as _move :

def _move ’move_em; waitmove; getangles; calcHKL’

String variables are then assigned to values that will be written to the output devices
using the scan_loop macro. The scan_loop macro is generally defined as _loop
which has the definition,

160 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

The loop macro, called by all the scans at each iteration
def _loop ’

scan_count _ctime
measuretemp
calcHKL
z = _ctime < 0? S[sec]/1000:S[MON]
T_AV += DEGC; MT_AV += z
printf("%3d %s %8.0f %8.0f %10.6g%s\n",\

NPTS,VPRNT,S[DET],S[MON],S[sec]/1000,Pout)
onp; offt
printf("%3d %11.5g %11.5g %11.5g %8.6g %8.0f %8.0f %s%s\n",\

NPTS,H,K,L,S[sec]/1000,S[MON],S[DET],PPRNT,Pout)
offp; ond; offt
printf("%s%s %d %g %g\n",FPRNT,Fout,(TIME_END=time())-EPOCH,z,S[DET])
offd; ont

’

This macro first counts by calling the scan_count macro, normally defined as
_count , which is, in turn, defined as count . (In powder mode, or when using
updated counting during scans, _count is defined differently.) The _loop macro then
calls measuretemp . With this macro, you can have any per-point action done, not
limited to, nor necessarily even including, measuring the temperature of the sample.
Next in _loop the sums for computing the average temperature and monitor count
rate are adjusted. Finally the video screen, printer and data file are updated with
the results of the current iteration.

The last thing in _scan_on is a call to scan_tail , normally defined as _tail :
The tail macro, called by all the scans when they complete
def _tail ’

undef cleanup
TIME_END = time()
if (!(_stype&8)) {

ond; offt
Ftail
offd; ont
plot

}
’

This macro removes the definition of cleanup , since it is no longer needed, and if not
a mesh scan, adds the user defined results to the file and calls the plot macro.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION STANDARD MACRO GUIDE 161

Standard Data-File Forma t
The data files created by the macros have a simple format. The files are ASCII. Con-
trol lines in the file begin with a # followed by a upper-case letter. Other lines are
blank or contain scan data.

The control conventions are:

Code Parameters Description
#C comment Comments inserted by many of the standard macros.
#D date A string representing the current date, in the format

Wed May 4 23:59:49 1988 .
#E seconds The UNIX epoch at the time the file was opened.
#F filename The name by which the file was opened.
#G parameters The contents of the geometry parameter array G[] .
#L labels Labels for the data columns.
#M counts If counting to monitor counts, the number of counts.
#N columns The number of columns of data that follow.
#O0 motor names The names of the first 8 motors.
#O1 motor names The names of the second 8 motors, etc.
#P0 motor positions The starting positions of the first 8 motors.
#P1 motor positions The starting positions of the second 8 motors, etc.
#Q H K L The starting values of a scan in reciprocal space.
#R results Results from various pl_anal() operations optional-

ly printed at the conclusion of a scan.
#S number A new scan having scan number number follows,

normally preceded by a blank line.
#T seconds If counting to time, the time used.
#U Reserved for user.
#X setpoint The temperature setpoint.

162 STANDARD MACRO GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

FOUR-CIRCLE REFERENCE

164 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Introduction
When invoked by the name fourc, spec runs with code appropriate for a four-circle
diffractometer. This section of the Reference Manual focuses on the features of spec
unique to the fourc version.

The four circles of the standard four-circle diffractometer are: 2θ, the angle through
which the beam is scattered, and θ, χ, and φ, the three Euler angles, which orient the
sample. Of these three, θ is the outermost circle with its axis of rotation coincident
with that of 2θ. The χ circle is mounted on the θ circle, with its axis of rotation per-
pendicular to the θ axis. The φ circle is mounted on the χ circle such that its axis of
rotation lies in the plane of the χ circle.

From the keyboard and on the screen, the angles are named tth , th , chi and phi ,
respectively, and conventionally referred to in that order. For fourc to work properly,
angles with these names must be configured.

In describing the operation of a four-circle diffractometer, it is convenient to consider
three coordinate systems: 1) a frame fixed in the laboratory, 2) a frame fixed on the
spectrometer and 3) the natural axes of the sample. Note that fourc uses right-
handed coordinate systems. All rotations are right-handed except for the χ rotation.

(1) The x-y plane of the laboratory coordinate system is called the scattering
plane and contains the sample and the points reached by the detector as it
rotates on the 2θ arm. A counter-clockwise rotation of the 2θ axis corresponds
to increasing 2θ, with the 2θ rotation axis defining the positive z direction in
the laboratory. The zero of 2θ is defined as the setting at which the unde-
flected X-ray beam hits the detector.

The positive y axis is along the line from the sample to the X-ray source. The
position at which θ rotates the χ circle to put the χ rotation axis along the y
axis defines the zero of θ. A clockwise rotation of χ corresponds to increasing χ.

The zero of χ is the position which puts the φ rotation axis along the positive z
axis. The positive x axis direction is determined by the cross product of the y
and z axes (x̂=ŷ×ẑ), which completes the definition of the right-handed coordi-
nate system.

It is important to note that the zeroes of 2θ, θ and χ and the direction of posi-
tive rotation of all the circles must be set as described above and cannot be
freely redefined.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 165

(2) The spectrometer coordinate system is defined as a right-handed system fixed
on the φ rotation stage at the sample position such the coordinate system is
aligned with the laboratory coordinate system when all four spectrometer
angles are zero. This definition determines the zero of φ.

(3) The third coordinate system is aligned with specific directions in the sample.
A common and useful example are coordinates defined as the lattice vectors of
a crystalline sample. When placing a sample in the spectrometer, it is
unlikely that its axes will line up with the spectrometer axes. Nevertheless,
fourc allows the sample orientation to be fully specified by finding the angles
at which two Bragg peaks are detected and giving the corresponding recipro-
cal lattice indices. This process is described fully in the section on the Orien-
tation Matrix.

To orient a sample so as to measure the intensity at a particular reciprocal lattice
position requires that the reciprocal lattice vector of interest is aligned with the scat-
tering vector of the spectrometer. Since any rotation about the scattering vector does
not change the diffraction condition, there is a high degree of degeneracy that must
be resolved in order for fourc to determine unique angle settings. How the degener-
acy is lifted described in the section on Four-Circle Modes.

Diffractometer Alignment
This section presents a guide on how to set up a four-circle spectrometer. This sum-
mary applies whether the scattering plane is horizontal or vertical.

The first step, which should need only be done the first time fourc is used with the
diffractometer, is to ensure each diffractometer motor is set up with the correct name,
mnemonic, rotation sense, steps-per-degree, etc. The config macro is generally used
for this purpose. For stepping motors, the rotation sense of an axis depends on the
details of the motor controller and cable connections. If the rotation sense isn’t as
described in the Introduction, change the sign_of_user_×_dial parameter in the motor
configuration file.

For each motor, fourc keeps track of a both a dial and a user position. The dial posi-
tion is meant to agree with the readout of the physical dial on the spectrometer. The
value and the sign of the steps_per_unit parameter should be chosen so that the dial
position and its direction in the computer agree with the physical dial reading. Use
the set_dial macro to set the dial positions. The user positions should correspond to
the underlying “true” orientation angles of the spectrometer that satisfy the con-
straints given above. Use the set macro to set the user positions.

166 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Once properly configured, diffractometer alignment proceeds as follows.

(1) Arrange for the X-ray beam to go through the center of rotation. Generally,
the center of rotation is found with a pin and a telescope.

(2) Arrange for the X-ray beam to be perpendicular to the 2θ axis. This condition
is typically verifyed by comparing X-ray burns made on X-ray sensitive paper
with 2θ near the undeflected beam direction and with 2θ offset by 180°.

(3) Set 2θ so that the undeflected X-ray beam direction corresponds to the zero of
2θ.

(4) Align the χ rotation axis with the laboratory y axis to set the zero of θ.

(5) Align the φ rotation axis with the θ rotation axis to set the zero of χ.

One way to do (4) and (5) is as follows:

(i) Mount a Si(111) wafer so that the (111) direction is (approximately) along the
φ axis.

(ii) Find the (111) Bragg reflection. Note the values of θ and χ. Call them θ1 and
χ1.

(iii) Rotate φ by 180°.

(iv) Find the Bragg reflection again. Note thes values of θ and χ. Call them θ2
and χ2.

(v) 1⁄2 (χ1 + χ2) corresponds to χ = 90° in a correctly aligned spectrometer; 1⁄2 (θ1 + θ2)
corresponds to θ = 1⁄2 2θ.

The Huber four-circle diffractometer is an example of an instrument that works with
fourc.1 Another common spectrometer configuration has two crossed ± 20° tilt stages
on top of full θ and 2θ circles. This configuration is compatible with the four-circle
code if the tilt stage immediately adjacent to the θ circle is χ and the other is φ. When
the first tilt stage is zero, χ is at 90°.

1The four-circle Huber has dial readings with all right-handed rotations, so the χ circle should have dial
readings and user readings that are in opposite senses. If the θ circle is offset by 180° then the dial readings and
the user readings of all angles can have the same sense.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 167

Or ientation Matr ix
Angle calculations for the four-circle diffractometer are described in detail in Busing
and Levy.2 You may also refer to that paper to learn how to calculate the orientation
matrix. The orientation matrix, UB, describes the sample orientation with respect to
the diffractometer angles. Given UB, it is possible to calculate the diffractometer
angles (2θ , θ , χ , φ) necessary to rotate a particular scattering vector Q, indexed by
(H, K, L), into the diffraction position. The matrix B transforms the given (H, K, L)
into an orthonormal coordinate system fixed in the crystal. The matrix U is the rota-
tion matrix that rotates the crystal’s reference frame into the spectrometer’s.

The first step in constructing an appropriate orientation matrix is to enter the sam-
ple crystal lattice parameters a, b, c, α, β and γ.3 These are real-space parameters, as
might be found in Wychoff4 or Pearson.5 Use the macro setlat to assign values:

1.FOURC> setlat 3.61 3.61 3.61 90 90 90

2.FOURC>

Next, you must specify the sets of values of (2θ , θ , χ , φ) at which two Bragg reflections
are in the diffracting position. One of these is called the primary reflection. Fourc
ensures that the values of (H, K, L) reported for the primary reflection agree (to
within a scale factor) with the values entered. However, because of experimental
errors and/or uncertainties in the unit cell parameters, the values of (H, K, L)
reported for the other Bragg reflection, called the secondary reflection, may not agree
perfectly with the entered values (although they should be close).

You can use the or0 and or1 macros to enter the parameters for the primary and sec-
ondary reflections, respectively. However, the or0 and or1 macros require that the
diffractometer be moved to the associated reflections, as these macros use the current
angles and the entered (H, K, L) in the calculation of the orientation matrix. Alterna-
tively, you can use the setor0 and setor1 macros, which prompt for both (H, K, L)
and the angles that define the orientation matrix, without moving the spectrometer
to the given settings.

2W. R. Busing and H .A. Levy, Acta Cryst. 22, 457 (1967). Note however, that this paper uses right-handed
coordinates systems and left-handed rotations for all rotations except for χ, which is right-handed.

3The conventional symbols for the crystal lattice angles include α and β. These angles are unrelated to the
orientation angles α and β defined in the introduction. The different meanings should be clear from context.

4R. W. G. Wychoff, Crystal Structures (Wiley, New York, 1964).
5P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (Ameri-

can Society for Metals, Metals Park, Ohio, 1985).

168 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Four-Circle Modes
As noted above, because there are three Euler angles (θ , χ , φ) while the direction of
the scattering vector Q is specified by only two angles, there is a degeneracy associ-
ated with the transformation from (H, K, L) to (2θ , θ , χ , φ). The degeneracy is
resolved in fourc by providing a constraint. In fourc, the different constraints are
called modes. The value of the g_mode geometry parameter determines the prevail-
ing mode.

Fourc defines several angles in order to specify certain of the modes.

The angle ω is defined as ω = θ � � 2θ)/2, and is referred to as OMEGA .

The angle ψ (referred to as AZIMUTH) specifies a counter-clockwise rotation about the
diffraction vector. The zero of ψ is determined by a reference vector, different from
the diffraction vector. The azimuthal angle ψ is defined to be zero when this vector is
in the diffraction plane.

The angles α (ALPHA) and β (BETA) are defined such that the angles between the
azimuthal reference vector and the incident and scattered X-rays are 90° � α and
90° � β, respectively. One commonly used azimuthal reference vector is the sample’s
surface normal, which then makes α and β correspond to the incident and exit angles
of the X-rays on the surface.

Omega Equals Zero (g_mode = 0)

The simplest constraint is ω = 0. Any (H, K, L) with a small enough 2θ can be
reached in this mode.

Omega Fixed (g_mode = 1)

In this mode ω is fixed to a finite value. Suppose you want to go the the (0, 0, 2) Bragg
reflection but with ω = 10. You would then type

2.FOURC> setmode 1

Now using Omega-Fixed mode.

3.FOURC> OMEGA=10

4.FOURC> br 0 0 2

5.FOURC>

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 169

Zone or χ and φ Fixed (g_mode = 2)

A zone of reciprocal space is a plane passing through the origin. A zone axis is the
direction of the normal to this plane. The zone axis can be specified by the vector
product of any two non-colinear points in the zone. Zone mode forces the specified
zone axis to be normal to the scattering plane. In other words, a zone of the crystal is
leveled into the scattering plane of the spectrometer. Any point in this plane can
then be reached with θ and 2θ (i.e., χ and φ are fixed). The geometry code provides for
the calculation of the χ and φ necessary to put any two reciprocal space positions in
the scattering plane via the cz , sz or mz macros. These macros are explained later.

Phi Fixed or Three Circle (g_mode = 3)

The angle φ is fixed at some arbitrary value.

Azimuth Fixed (g_mode = 4)

This mode fixes the value of the rotation angle ψ of a reference vector about the scat-
tering vector Q.

Azimuth-fixed mode provides a degree of control that is particularly useful in a sur-
face-diffraction experiment. If the reference vector is chosen to be the surface nor-
mal, setting ψ to 90° rotates the surface normal into the plane defined by the scatter-
ing vector and the diffractometer θ-2θ axis. This means that the incidence angle α
will equal the exit angle β.

The reference vector is defined by the geometry parameters g_haz , g_kaz , and
g_laz . Use the macro setaz to specify the (H, K, L) of the reference vector. For
example, to set the reference vector to (0, 0, 2), use

5.FOURC> setaz 0 0 2

6.FOURC>

Azimuth-fixed mode will fail if you try to make measurements with Q parallel to
the reference vector, since there is then no way to define a rotation about Q. The
remedy is either to switch to another mode (usually the best choice) or to switch to
another reference vector.

Alpha Fixed (g_mode = 5)

This mode allows you to hold the value of α constant while moving to various values
of (H, K, L). This is useful in experiments in which it is necessary to control the X-
ray penetration depth into a sample. More generally, if looking at a weak signal from

170 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

a surface, keeping α small will keep the background small with no restriction (in
principle) on the momentum transfer normal to the surface.

Suppose you are studying a sample of copper and you want to fix the incidence angle
to be equal to the critical angle for total external reflection. Set the reference vector
to the surface normal of the crystal and then type the following commands:

6.FOURC> setmode 5
Now using Alpha-fixed mode.

7.FOURC> ALPHA=0.4126

8.FOURC> br 0 2 2

9.FOURC>

To implement alpha-fixed mode, fourc calculates the value of ψ needed to fix the
angle between the incident wave vector and the reference vector.6

Beta Fixed (g_mode = 6)

This is the same as alpha-fixed mode except that β, rather than α, may be fixed.

6S. G. J. Mochrie, J. Appl. Cryst. 21, 1-3 (1988).

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 171

Freezing Angles
For the omega-fixed, phi-fixed, zone, azimuth-fixed, alpha-fixed and beta-fixed
modes you may freeze the value of the associated angle (or angles), so when calculat-
ing motor positions corresponding to an arbitrary (H, K, L) using calcA (within br ,
for example), the angle (or angles) will be reset to the frozen value before the calcula-
tion no matter what the current position of the diffractometer.

The macro freeze waits until all motors have stopped moving, then sets a variable
(g_frz) indicating frozen mode is on and saves the current position of the frozen
angle in another variable. Usage might be:

9.FOURC> setmode 1
Now using Omega-Fixed mode.

10.FOURC> freeze 5

Sun Jan 28 12:16:23 1990. Freezing Omega at 5.

11.FOURC>

If the value to freeze for the current mode is not given as an argument to the macro,
the current value of the related angle or parameter is used to set the frozen value. In
zone mode, both the χ and φ values need to be given as arguments.

The macro unfreeze sets g_frz to zero. Subsequent angle calculations will use
whatever the current value of the associated constrained angle or angles for the cur-
rent mode.

172 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Sector s
Sectors correspond to different symmetry transformations of (2θ , ω , χ , φ) and may be
of help in avoiding blind spots. Sectors can also be useful for samples in cryostats or
ovens. All modes can have the positions chosen for the motors further influenced by
the choice of sector. However, the modes azimuth-fixed, alpha-fixed and beta-
fixed only allow sectors numbered zero through three, below.

For a given pair of incident and scattered X-ray beams, ki and kf, there are eight ori-
entations of the crystal in the spectrometer that give the same scattering since they
present equivalent projections to the incident and scattered beams. The eight orien-
tations are labeled as sectors 0 through 7.

Four of the orientations come from the symmetries of a pair of vectors. They corre-
spond to the identity operation (i.e., the current diffraction angles), a rotation of 180°
about ki, a rotation of 180° about the bisector of ki and kf, and a rotation about z by
180° � �

θ. The last two symmetries are based on interchanging the role of the
entrance angle and the exit angle of the X-rays on the sample. These four symme-
tries give sectors 0, 2, 4 and 6 in fourc. For each of these four positions another posi-
tion can be obtained by increasing θ by 180°, decreasing φ � 	 ��� � � ° and changing the
sign of χ. S� � �� � � � �
 �� � �� � � � �� � ��� � � � � � � � ��� ��� � � � � � � �� ��� � ��� � � � �� � � θ and φ can be
increased by 180. These orientations give sectors 1, 3, 5 and 7. Studying these oper-
ations shows that sectors 2, 3, 6 and 7 have opposite signs of 2θ from the current posi-
tion. Sectors 2, 3, 4 and 6 have flipped the up direction of the sample (normal to the
scattering plane) to the down direction.

The value of g_sect determines in which sector of reciprocal space the diffractometer
operates.

The actual transformations of the angles are:

0 1 2 3 4 5 6 7
2θ → 2θ 2θ � � θ � � θ 2θ 2θ � � θ � � θ
ω → ω ω � � 80° � ω 180° � ω � ω 180° � ω ω ω � � 80°
χ → χ � χ χ � � 80° 180° � χ 180° � χ χ � � 80° � χ χ
φ → φ φ � � 80° φ φ � � 80° φ � � 80° φ φ � � 80° φ

In addition, a sector 8 is defined that can be used when the χ and φ circles of the
diffractometer are arc segments in contrast to the complete circle. Sector 8 mini-
mizes χ �

�
0°  and φ .

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 173

Cut Points
� ��� ��� �
�� � � � � ° and +270° are at the same position on a circle, but if a motor in spec
is sitting at 0°, it will move counter-clockwise by 90° � � � ��� ��� ����� � � � ° position and
clockwise by 270° to get to the +270° position.

By setting a lower cut point for a particular motor, you can choose what value on the
circle the four-circle angle calculations will produce. That is, the calculations will
place the angle between the lower cut point and that value plus 360°.

Cut points can be set for the θ, χ and φ four-circle angles. For the 2θ angle, the lower
� � �
�������� � � � � ��� ��� ��� � � °. For the azimuth-fixed modes, there is pseudo-cut point
for the azimuthal angle. If the cut point is less than zero, the calculated azimuth will
� � � ��� � ����� � � � � ° and 0°, otherwise the azimuth will be between 0° and +180°.

The default cut points are shown below.

Angle Default Cut Point
θ ��� � �

χ ��� � �

φ ��� � �

ψ 0

The macro cuts can be used to set or display the cut points. With no arguments, it
displays the current cut points. Two arguments are used to set a single cut point.
Four arguments set all cut points.

11.FOURC> cuts

Cut Points:

th chi phi azimuth
-180 -180 -180 0

12.FOURC> cuts phi 90

or
13.FOURC> cuts -180 -180 90 0

14.FOURC>

174 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Four-Circle Files
Most questions regarding the behavior of spec when used with a four-circle diffrac-
tometer can ultimately be resolved by consulting the appropriate source code. The
file geo_fourc.c in the standard distribution of spec contains the code for all the four-
circle calculations. The file u_hook.c contains a few lines of code that connect the
code in geo_fourc.c with the rest of the program. Finally, the files macros/fourc.src
and macros/ub.mac in the standard distribution contains the definitions for all the
four-circle and orientation matrix macros.

Four-Circle Var iables
The four-circle coordinate variables (H, K and L, in particular) are stored in a built-in
array named Q[] . The four-circle geometry calculations either use the motor posi-
tions contained in the A[] array to calculate values for the Q[] parameters or place
motor positions in A[] based on the current values in Q[] . Each four-circle variable
has a descriptive macro definition as an alias, such as def OMEGA ’Q[6]’ .

Variable Alias Description
Q[0] H x component of the scattering vector.
Q[1] K y component of the scattering vector.
Q[2] L z component of the scattering vector.
Q[3] LAMBDA Incident X-ray wavelength λ.
Q[4] ALPHA Incident angle α.
Q[5] BETA Exiting angle β.
Q[6] OMEGA ω = θ � � 2θ)/2.
Q[7] AZIMUTH Azimuthal angle.
Q[8] F_ALPHA Frozen value of α for alpha-fixed mode.
Q[9] F_BETA Frozen value of β for beta-fixed mode.
Q[10] F_OMEGA Frozen value of ω for omega-fixed mode.
Q[11] F_AZIMUTH Frozen value of ψ for azimuth-fixed mode.
Q[12] F_PHI Frozen value of φ for phi-fixed mode.
Q[13] F_CHI_Z Frozen value of χ for zone mode.
Q[14] F_PHI_Z Frozen value of φ for zone mode.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 175

The geometry parameters in the table below affect the geometry calculations in vari-
ous ways. Although the parameters can be changed by assignment, the preferred
method is to use the indicated macro for setting the parameters.

Variable Alias Related Macro Description
G[0] g_mode setmode Specifies the four-circle mode.
G[1] g_sect setsector Specifies the sector.
G[2] g_frz freeze Nonzero when an angle is frozen.
G[3] g_haz setaz H of the azimuthal reference vector.
G[4] g_kaz setaz K of the azimuthal reference vector.
G[5] g_laz setaz L of the azimuthal reference vector.
G[6] g_zh0 mz, sz H of first zone-mode vector.
G[7] g_zk0 mz, sz K of first zone-mode vector.
G[8] g_zl0 mz, sz L of first zone-mode vector.
G[9] g_zh1 mz, sz H of second zone-mode vector.
G[10] g_zk1 mz, sz K of second zone-mode vector.
G[11] g_zl1 mz, sz L of second zone-mode vector.

U[0] g_aa setlat a lattice constant in Angstroms.
U[1] g_bb setlat b lattice constant.
U[2] g_cc setlat c lattice constant.
U[3] g_al setlat α lattice angle.
U[4] g_be setlat β lattice angle.
U[5] g_ga setlat γ lattice angle.
U[6] g_aa_s setrlat a* reciprocal lattice constant.
U[7] g_bb_s setrlat b* reciprocal lattice constant.
U[8] g_cc_s setrlat c* reciprocal lattice constant.
U[9] g_al_s setrlat α* reciprocal lattice angle.
U[10] g_be_s setrlat β* reciprocal lattice angle.
U[11] g_ga_s setrlat γ* reciprocal lattice angle.

U[18] g_u00 or0, setor0 Observed 2θ of primary reflection.
U[19] g_u01 or0, setor0 Observed θ of primary reflection.
U[20] g_u02 or0, setor0 Observed χ of primary reflection.
U[21] g_u03 or0, setor0 Observed φ of primary reflection.
U[24] g_u10 or1, setor1 Observed 2θ of secondary reflection.
U[25] g_u11 or1, setor1 Observed θ of secondary reflection.
U[26] g_u12 or1, setor1 Observed χ of secondary reflection.
U[27] g_u13 or1, setor1 Observed φ of secondary reflection.
U[12] g_h0 or0, setor0 H of primary reflection.
U[13] g_k0 or0, setor0 K of primary reflection.

176 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

U[14] g_l0 or0, setor0 L of primary reflection.
U[15] g_h1 or1, setor1 H of secondary reflection.
U[16] g_k1 or1, setor1 K of secondary reflection.
U[17] g_l1 or1, setor1 L of secondary reflection.

The first three parameters select modes and set flags. The next three parameters
describe the components of the azimuthal reference vector. The six after that
describe the zone-mode vectors.

The next sets of parameters describe the orientation matrix, including the lattice con-
stants of the sample and the parameters of the primary and secondary orientation
reflections. Remember that the calcG macro, described below, must be called to
make sure the orientation matrix is recalculated after changing any of these related
values above. The or0 , setor0 , or1 , setor1 , or_swap and setlat macros do just
that.

Four-Circle Functions
You can access the four-circle calculations through spec’s user-hook routine calc() .
The table below summarizes the calculations available.

Function Alias Description
calc(1) calcA Calculate motor positions for current H K L.
calc(2) calcHKL Calculate H K L for motor positions in A[].
calc(4) calcG Recalculate orientation matrix.
calc(5) calcZ Calculate χ and φ for zone feature.
calc(7,0) calcD Calculate direct lattice from reciprocal parameters.
calc(7,1) calcR Calculate reciprocal lattice from direct parameters.
calc(8) calcE Calculate λ for current monochromator positions.
calc(9) calcM Calculate monochromator position for current λ.
calc(10) _begUB Initialize sums for fitting UB.
calc(11) _addUB Add a reflection to fitting sums.
calc(12) _fitUB Fit UB.
calc(13) calcL Calculate lattice parameters from UB.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 177

Four-Circle Macros
The macros below are used in setting the parameters and selecting modes.

Name Arguments Description
setmode 1 optional Choose geometry mode.
setsector 1 optional Choose sector.
setlat 6 optional Set lattice parameters.
setaz 3 optional Set azimuthal reference vector.
setmono 2 optional Set beam-line monochromator parameters.
or0 3 optional Set primary orientation reflection.
or1 3 optional Set secondary orientation reflection.
setor0 none Alternative to set primary orientation reflection.
setor1 none Alternative to set secondary orientation reflection.
or_swap none Swap values for primary and secondary vectors.
freeze none Turn on freeze mode.
unfreeze none Turn freeze mode off.
cz 6 Calculate zone.
sz 6 Set zone parameters.
mz 6 Move to zone.
cuts 2 /6 optional Show or set cut points.

Most of the macros with optional arguments will prompt for the required values if
invoked without arguments. Using any of these macros to change a parameter will
produce a comment on the printer and in the data file.

The or0 macro is a typical example of these macros.
14.FOURC> prdef or0
def or0 ’

if ($# == 3) {
_1 = $1; _2 = $2; _3 = $3

} else if ($# == 0) {
print "\nEnter primary-reflection HKL coordinates:"
_1 = getval(" H", g_h0)
_2 = getval(" K", g_k0)
_3 = getval(" L", g_l0)

} else {
print "Usage: or0 or or0 H K L"
exit

}
waitmove; get_angles
gpset _1 g_h0 # gpset documents the change
gpset _2 g_k0
gpset _3 g_l0
gpset A[mA[0]] g_u00

178 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

gpset A[mA[1]] g_u01
gpset A[mA[2]] g_u02
if (_numgeo > 3) { gpset A[mA[3]] g_u03 }
if (_numgeo > 4) { gpset A[mA[4]] g_u04 }
if (_numgeo > 5) { gpset A[mA[5]] g_u05 }
gpset LAMBDA g_lambda0
calcG

’

15.FOURC>

Zone Macros
Zone mode is controlled with the cz (calculate zone), sz (set zone) and mz (move
zone) macros. Given two Bragg reflections, cz will calculate and display the values of
χ and φ necessary to put both of these reflections in the scattering plane. To find the
angles needed to put (0, 0, 2) and (0, 2, 2) in the scattering plane, type

15.FOURC> cz 0 0 2 0 2 2
Chi = 45 Phi = 90

16.FOURC>

Once appropriate values of χ and φ have been calculated, the scattering plane can be
set using the pl (plane) macro, which moves the 2θ and θ motors together,

16.FOURC> pl 45 90

17.FOURC>

Alternatively, you can use the mz macro, which calculates the necessary χ and φ,
moves there, sets zone mode, if not already in it, and saves the values of the zone
vectors in the G[] geometry parameter array.

17.FOURC> mz 0 0 2 0 2 2

18.FOURC> p A[chi], A[phi]
45 90

19.FOURC>

The sz macro calculates and displays the χ and φ values, sets zone mode, if not
already in it, saves the values of the zone vectors, sets the frozen values of zone-
mode χ and φ, but does not move the diffractometer.

The cz , sz and mz macros make use of the Z[] array variables to pass the zone vec-
tors to the geometry code.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 179

19.FOURC> prdef cz
def cz ’

if ($# != 6) {
print "Usage: cz h0 k0 l0 h1 k1 l1"
exit

}
Z[0]=$1; Z[1]=$2; Z[2]=$3; Z[3]=$4; Z[4]=$5; Z[5]=$6
calcZ
printf("Chi = %g Phi = %g\n", A[chi], A[phi])
waitmove; get_angles; calcHKL

’

20.FOURC>

Least-Squares Refinement of Lattice Parameter s
In the previous sections, the procedure described for determining the orientation
matrix required a knowledge of the lattice parameters of the crystal and the position
of two reflections. When such information is unknown, the orientation matrix can be
fit to an unlimited number of observed peak positions using a least-squares
procedure.7 Lattice parameters derived from the fitted orientation matrix can then be
calculated, although such lattice parameters are not constrained to exhibit any sym-
metry whatsoever.

In spec’s implementation of least square refinement, three macros are used to create
a file that contains the observed peak positions. That file is eventually run as a com-
mand file, and the least squares analysis is performed.

The reflex_beg macro initializes the reflections file:

7J. Matthews and R. L. Walker, Mathematical Methods of Physics, (Benjamin, Menlo Park, 1970), p. 391.

180 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

global REFLEX # Variable for file name
Open the file, save old one as .bak and write header
def reflex_beg ’{

if ("$1" == "0") {
if (REFLEX == "")

REFLEX = "reflex"
REFLEX = getval("Reflections file", REFLEX)

} else
REFLEX = "$1"

if (open(REFLEX))
exit

close(REFLEX)
if (file_info(REFLEX, "-s"))

unix(sprintf("mv %s %s.bak", REFLEX, REFLEX))
fprintf(REFLEX,"# %s\n\n_begUB\n\n",date())

}’

The reflex macro adds lines to the file that contain the (H, K, L) and (2θ , θ , χ , φ) of
each reflection:

Add reflection to the file
def reflex ’

if ($# != 3) {
print "Usage: reflex H K L"
exit

}
if (REFLEX == "") {

REFLEX = getval("Reflections file", "reflex")
if (REFLEX == "")

exit
}
waitmove; get_angles; calcHKL
fprintf(REFLEX,"H = %g; K = %g; L = %g\n",$1,$2,$3)
{
local i

for (i=0; i<_numgeo; i++)
fprintf(REFLEX,"A[%s]=%9.4f; ",motor_mne(mA[i]),A[mA[i]])

fprintf(REFLEX,"\n")
}
fprintf(REFLEX,"# counts = %g\n", S[DET])
fprintf(REFLEX,"_addUB\n\n")

’

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 181

Finally, the reflex_end macro puts the proper trailer on the file:
Add trailer to file
def reflex_end ’

fprintf(REFLEX,"_fitUB\n")
printf("Type \"qdo %s\" to calculate new orientation matrix\n",\

REFLEX)
’

When you are ready to calculate the orientation matrix, simply run the command file.
There is no limit to the number of reflections contained in the file. You can also edit
the file by hand to add or subtract reflections.

The calculated orientation matrix will remain valid until you type calcG , or invoke a
macro that calls calcG . Those macros are or0 , or1 , or_swap and setlat .

The six original lattice parameters will remain unchanged when using the above
macros to fit the orientation matrix to the reflections. The calcL macro can be
invoked to calculate the lattice parameters derived from the fitted orientation matrix
and place their values in the appropriate elements of the parameter array. The old
lattice parameters will be lost.

Here is a sketch of the commands you use to perform the least squares refinement of
the lattice parameters.

20.FOURC> reflex_beg
Reflections file (reflex)? <return>

21.FOURC> (find and move to a reflection ...)

22.FOURC> reflex 2 2 0

23.FOURC> (find and move to another reflection ...)

24.FOURC> reflex 2 0 2

25.FOURC> ...

26.FOURC> reflex_end
Type "qdo reflex" to recalculate orientation matrix.

27.FOURC> qdo reflex
Opened command file ‘reflex’ at level 1.

28.FOURC>

At least three reflections must be used for the least-squares fitting to work.

182 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

To calculate the new lattice parameters, use the calcL macro:
28.FOURC> calcL

29.FOURC> pa

4-Circle Geometry, Omega-Fixed (mode 1), frozen coordinate, sector 0

Primary Reflection (at lambda 1.54):
Omega Chi Phi = 5.00025 90.102 -82.5455

H K L = 2 2 0
Secondary (at lambda 1.54):

Omega Chi Phi = 0 0 90
H K L = 0 1 0

Azimuthal Reference:
H K L = 2 2 0

Lattice Constants:
a b c = 4.12644 4.12295 4.11078

Alpha Beta Gamma = 90.0435 89.9763 90.1221

30.FOURC>

Here is a typical reflections file created by the above macros:
Wed Jan 31 21:55:01 1990

_begUB

H = 2; K = 2; L = 0
A[tth]= 63.8185; A[th]= 36.9320; A[chi]= 89.8765; A[phi]= -80.0815
counts = 3456
_addUB

H = 2; K = 0; L = 2
A[tth]= 63.8335; A[th]= 36.8920; A[chi]= 145.4185; A[phi]= 42.8145
counts = 6345
_addUB

H = 0; K = 2; L = -1
A[tth]= 49.4100; A[th]= 29.6725; A[chi]= 35.8180; A[phi]= 45.9070
counts = 5634
_addUB

H = 0; K = 2; L = -1
A[tth]= 49.3550; A[th]= 29.7225; A[chi]= 35.9380; A[phi]= 45.9070
counts = 4563
_addUB

_fitUB

Within this file, the calc() function codes defined by the macros _begUB , _addUB and
_fitUB are used to access the C code that performs the least squares operations.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION FOUR-CIRCLE REFERENCE 183

184 FOUR-CIRCLE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

ADMINISTRATOR’S GUIDE

186 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Introduction
The first section of this guide outlines the procedure for installing spec on your com-
puter. Later sections describe the format of some of the installed files.

Quick Install
For those who need little explanation, here are minimal installations instructions
based on the customary configuration:

First time, create a specadm user account, then
cd ˜specadm
mkdir spec4.04.01 # choose name based on release
cd spec4.04.01
tar xvf .../spec_XXX.tar # use pathname of distribution
If an update, start with last version’s parameters
cp ../specYYY/install_data . # use pathname of previous distribution
./Install # as root

The Install program will display the current installation parameters and prompt for
changes. Once the software is installed, run the spec executable and type config to
invoke the hardware configuration editor.

For those needing more detailed instructions, read on.

Steps For Installing spec
To install spec on your computer, be sure you have the software development tools
available. spec’s requirements include the make utility, a compatible C compiler, and
compatible runtime libraries for linking.

Before installing spec for the first time, you need to make several decisions:

Decide who will own the files. Most sites create a special user account, usually with
the name specadm, that has a home directory used to hold the spec distribution files
and is the user account assigned to own the installed spec files. Having a special
specadm account allows you or other users to configure and edit spec files without
invoking super-user powers, thus lowering the risk of making catastrophic errors.

Decide where to put the distribution. The distribution files are what come directly
from CSS, usually as a tar file sent via internet, but sometimes on floppy disk, mag-
netic tape or CD-ROM. These distribution files need to be extracted into a distribu-
tion directory that serves as a “staging” area for the installation. The files needed

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 187

while running spec will be copied elsewhere during installation, so the distribution
directory need not be always accessible to the spec users. However, it is usually
advised to keep the distribution files available for reference. You will likely receive
updated distributions from time to time, and it is a good idea to keep each distribu-
tion in a separate directory. The usual choice is to put the distribution in the
specadm home directory in a subdirectory named after the spec version number,
such as ˜specadm/spec4.04.01.

Decide where the installed files will go. Two directories are needed for the installed
files. One is a directory for the executable programs. Most sites choose
/usr/local/bin. This directory needs to be in each spec user ’s search path. The sec-
ond directory is for spec’s auxiliary files. The usual choice is /usr/local/lib/spec.d.

Once these decisions are made and you have created a spec administrator user
account (if used) and the directories mentioned above (if needed), you are ready to
perform the installation. In brief, to install spec you:

• extract the distribution from the supplied media or tar file,

• run the installation program to install the spec files,

• install optional kernel drivers (seldom necessary),

• enter the hardware configuration for your particular experimental set-up.

In addition to the information presented below, be sure to consult any README files
in the spec distribution directories for up-to-date information on installation proce-
dures.

Extracting the Distribution

If you have made a spec administrator ’s account, you should become that user (or
the root user), either by logging in or by using the set-user id command su specadm .
You can then change to the spec administrator ’s home directory and use it as a place
to hold the distribution files.

Make a subdirectory to receive the current version of spec. If the distribution is
numbered release 4.04.01, you might make a directory called spec4.04.01 using the
command mkdir spec4.04.01 . Change to the new directory with cd spec4.04.01 .

188 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

The distribution will be in tar format. Usually the distribution is obtained as a tar
file via internet. If the distribution arrives via magnetic media or a CD-ROM, the
command to extract the tar file should be printed on the distribution label. For a tar
file, the command to extract the files is

tar xvf specdist.tar

Installing the spec Program Files

To install the spec files, particularly for a first time installation, you may need to
install as root. Use the su command to gain super-user privileges. If you are updat-
ing from previous distributions, you can copy the most recent install_data file con-
taining your default installation parameters to the new distribution directory. Then,
from the current spec distribution directory, type ./Install to run the installation
program.

The Install program will first indicate the current installation parameters. You may
either accept those or enter new parameters. When entering new parameters, the
default response to each question is given in parenthesis. Most questions present a
number of choices. You can either type the number of the choice or you can type out
the literal selection. If one of the options is the word “other”, such as for the name of
a directory, you can directly type your selection when prompted. For most questions,
the first choice listed is probably the best response. For example,

Choices for binaries directory are:

1) /usr/local/bin
2) /usr/local
3) /usr/local/spec/bin
4) /u/bin
5) /LocalLibrary/Spec/bin
6) other

Choose binaries directory (/usr/local/bin)?

Entering a single minus sign (−) will move back to the question for the previous
parameter, allowing you to enter a different value.

The installation questions ask for the following parameters:

platform ��� elects from the supported combinations of computer and operating sys-
tem.

geometry ��� elects from the supported diffractometer configurations.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 189

installed name ��� elects a name for the installed program. For configurations with
special geometry code, the first four letters of the name must match the first
four letters of the geometry configuration. Thus, fourcL and fourcR might be
the names for the left- and right-hand sides of a rotating anode lab with two
four-circle diffractometers.

additional geometries �
�

sks if you want to enter more combinations of the previous
two items.

file ownership ��� elects the name of the owner of the spec files.

binaries directory ��� elects where the programs that users run directly from the shell
will go. (It’s better to put spec files in some place other than the standard
/bin or /usr/bin, in order to be able to distinguish files that are standard UNIX
from those that have been added locally.) This directory should be in each
spec user ’s search path.

auxiliary directory � � elects where spec puts its auxiliary files. Among the auxiliary
files are user’s state files, which can occupy significant disk space if there are
many users running spec. Thus, this directory should not be on a file system
that is in danger of running out of space.

ESRF library directory �
�

ives the location of the ESRF device server libraries if
installing on an ESRF device server platform.

EPICS library directory �
�

ives the location of the EPICS channel access libraries if
installing on an EPICS platform.

config file permissions � � elects who can change the hardware configuration file. On
a low-security site, select the first choice, which lets all spec users make
changes as needed. See security notes on page 210 for additional considera-
tions.

data points type ��� elects the precision for spec’s internal data-points arrays. The
choice affects both the virtual memory consumption of spec while it is running
and the disk space consumed by user state files. Single precision data is suit-
able for most installations.

alternate history code ��� elects an alternative library that can be linked with spec to
provide a more powerful history recall syntax than the standard spec history
mechanism. The alternative library also includes command line editing fea-
tures. See the files in the readline subdirectory of the distribution for addi-
tional information.

CAMAC hardware support � � elects whether to include CAMAC hardware support in
the installed programs.

190 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

KSC 3929 SCSI-CAMAC file location �
�

ives the location of Kinetic Systems sup-
plied interface file for their model 3929 SCSI-to-CAMAC crate controller. If
using the CSS-supplied software on the HP platform, enter no . If using the
CSS-supplied driver on the SunOS 4.1 platform, enter no .

Nat Instr GPIB file location �
�

ives the path name of the cib.o file that may be
needed to be linked with spec when using National Instruments GPIB boards.
You may enter no for the PCII and AT-GPIB models of the board for PC com-
puters, for the SB-GPIB board with versions 1.3 and 2.1 of the driver for Sun
computers, for the 1014-1S board for Sun computers and for the boards for
IBM PS/2 and RS/6000 AIX systems.

SICL GPIB library flags ��� ets the flags required to load the libsicl.a file, necessary if
you are using the SICL GPIB presently supported on HP 700 series platforms
with either HP or IOtech devices. Note, CSS has an alternative to the IOtech
version of libsicl.a for the SCIS488/H product. Contact CSS for more informa-
tion.

VME hardware support ��� elects whether to include direct support for VME hard-
ware in the installed program. Note, this option does not refer to the VME
hardwared used in ESRF and EPICS environments.

Nat Instr VME file location �
�

ives the location of the nivxi.o file that will be needed
to be linked in with spec if you are using a National Instruments VME con-
troller.

Extra compiler flags �
�

llows you to add extra compiler flags for both compiling the
site-dependent source files and linking.

Extra object files �
�

llows you to specify extra site-dependent object files to include
when linking the spec executable.

Extra library flags �
�

llows you to specify extra site-dependent libraries to be
searched during the link phase when producing the spec executable.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 191

After answering the questions, the installation should then continue automatically,
producing output similar to the following:

Checking if u_hook.c needs compiling ...
Compiling u_hook.c ...
Checking if u_hdw.c needs compiling ...
Compiling u_hdw.c ...
Checking if readline library is up to date (may take some time) ...
Checking if geo_fourc.c needs compiling ...
Checking if spec needs to be linked ...
Linking spec ...
Making directory /usr/local/lib/spec.d
Making directory /usr/local/lib/spec.d/help
Making directory /usr/local/lib/spec.d/hgr
Making directory /usr/local/lib/spec.d/fourc
Making directory /usr/local/lib/spec.d/fourc/userfiles
Installing config auxiliary files ...

Installing fourc ...
ln /usr/local/bin/spec /usr/local/bin/fourc
Installing prototype config file ...
Fixing "fourc" config and settings file permissions ...
No settings file. Creating one.

Installing macros ...
Installing /usr/local/lib/spec.d/standard.mac ...
Installing /usr/local/lib/spec.d/four.mac ...

Installing help files ...
Clearing out old help files ...
Making the "help" help file ...
Making the "changes" help file ...
Copying help files ...
Changing ownership of help files to specadm ...
cp chk_file /usr/local/lib/spec.d

Installing the "chelp" program ...
Installing the "showscans" package ...
cp show.awk /usr/local/lib/spec.d
cp scans /usr/local/bin

Installing the "contents" program ...
cp contents /usr/local/bin

Installing the "tidy_spec" program ...
cp tidy_spec /usr/local/bin

If you change certain parameters that require relinking spec and don’t see the Link-
ing spec ... message when rerunning the Install program, simply remove the spec
file and run Install again.

192 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Installing Driver s

In the early history of spec, much of the hardware communication was done through
drivers. A driver is a piece of software that becomes part of the operating system and
allows spec to communicate with the particular hardware the driver supports or per-
forms some other function not available with the standard operating system. Most
current configurations of spec do not require any CSS-provided drivers.

Note that for many PC configurations where spec once required use of a driver, spec
now supports driverless configurations. The hardware is controlled directly from
user level using inb()/outb() type of calls. Frequent polling of status registers
replaces the use of interrupts. The performance of spec using polled mode seems to
be as effective as the interrupt-driven drivers. Those configurations that do require
spec drivers are described below.

The files for spec drivers are in the drivers subdirectory of the standard distribution.
If the file drive.tar.Z exists in the directory, run the TYPEME script to extract the
driver files. A README file in that directory contains up-to-date information about
the currently available drivers and instructions on installing them.

Some hardware devices on some platforms, such as the National Instruments GPIB
controllers on most platforms, require a vendor-supplied driver.

spec drivers are available for the items in the following list.

• The DSP 6001/6002 CAMAC crate controller with the DSP PC004 IBM PC inter-
face on System V release 3.2 and 4.x, SCO XENIX 386 3.2.3 and SCO UNIX plat-
forms. Note, this controller can also be used in a driverless configuration, where
all I/O to the CAMAC is through user-level inb()/outb() calls. Contact CSS to
discuss performance considerations.

• The Kinetic Systems 3922 CAMAC controller and 2926 PC board on on System V
release 3.2 and 4.x platforms. Note, this controller can also be used in a driverless
configuration, where all I/O to the CAMAC is through user-level inb()/outb()
calls. Contact CSS to discuss performance considerations.

• The Kinetic Systems 3912 CAMAC controller on BSD and ULTRIX platforms.

• The Kinetic Systems 3929 SCSI CAMAC crate controller on SunOS 4.1 and
Solaris 2.x platforms. Note, this controller can be used on HP-UX platforms with
special code built into spec � � o driver is necessary.

• The Oregon Micro Systems PCX, PC38 or PC39 PC board motor controller on Sys-
tem V release 3.2 and 4.x platforms. It is also possible to use this board in a
driverless, polled mode. Contact CSS to discuss performance considerations.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 193

• The Oxford/Tennelec/Nucleus PCA II multichannel analyzer card on System V
release 3.2, 4.x and linux platforms. It is also possible to use this board in a
driverless, polled mode. However, dead-time correction will not be available in
that case. The newer model PCA-3 board doesn’t require a driver in any case.

• On PC platforms using System V Release 3 UNIX, a special “nap” driver must be
installed to implement sub-second sleeps. This driver is not needed on System V
Release 4 platforms.

• On SCO XENIX, SCO UNIX and AIX PS/2 platforms, a special driver must be
installed to enable access to I/O ports. If any of the hardware devices you use
require I/O port access, install this driver.

• On linux platforms, spec is installed as a set-user-id root program, in order that
the iopl() system call can be executed. Note, though, that the root privilege is only
enabled for the duration of that call.

For the hardware controllers that require an interrupt on ISA-bus platforms, you
have to carefully select from the limited interrupts available. With 8-bit boards, such
as the DSP PC004 and the OMS motor controllers, there are only four interrupts
available: 3, 4, 5 and 7. The conventional PC device assignments are COM2, COM1,
LP2 and LP1 respectively. (Interrupts 0, 1, 2 and 6 are used by the clock, keyboard,
slave interrupt controller and floppy controller.) When you install a new board that
requires an interrupt vector, you may have to disable one of the above devices. They
are generally eliminated in the order LP2, COM2, COM1, LP1.

If you run out of 8-bit interrupts, it is possible to wire the interrupt signal from an
8-bit board to an unused interrupt line in a 16-bit slot. Contact CSS for advice.

Selecting the Hardware Configuration

The final step in the initial spec installation is to set the hardware configuration spe-
cific to your site. You can either do that by starting the spec program and typing
config , which is macro that executes the configuration editor, or you can run the
configuration editor directly. For the latter, first change to /usr/local/lib/spec.d (or
to the auxiliary file directory specified when you did the installation). If you are
installing the normal four-circle version of the program, type the command
edconf fourc . If you installed a different geometry, give the name of that geometry
as the argument. This command starts a spread-sheet styled program that lets you
select motor parameters, devices names, CAMAC slot assignments, etc.

Refer to the notes on the configuration editor that follow for instructions on using
edconf.

194 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Fine Tuning the Hardware Configuration

You may wish to fine tune the installation by avoiding linking in hardware support
for devices you will never be using at your site. The advantage is only that the spec
executable images will be smaller and will require a bit less memory when running.
The savings will be only on the order of 100 kbytes or so, depending on how many
hardware modules are eliminated. You select which hardware modules are included
by editing the file u_hdw.c and undefining the appropriate hardware keywords. After
doing so, you will need to redo the installation, although you may use the −p flag for a
partial installation to save time.

Adding Site-Dependent Help Files

If a file named .local in the help subdirectory of the auxiliary file directory exists and
contains a list of file names, those names will be added to the topics contained in the
help help file when spec is installed.

When spec starts up, the help file news, which is provided by CSS, and the file local,
if it exists, will be displayed. The help file format is described on page 70 in the Ref-
erence Manual.

Adding Site-Dependent C Code

This step applies only to sophisticated end users of spec who understand the C lan-
guage and need to customize spec for specific, site-dependent uses. Most readers can
skip to the next section. Note also, local code can be accessed using the data-pipe
facility explained on page 113 in the Reference Manual.

spec has provisions for end users to add their own C code to the program. User-
added code is accessed using the built-in calc() function. If you wish to incorporate
non-standard calculations within the spec program, you can do so by adding hooks
for the code in the u_hook.c source file. C code that you add should, in general, be
limited to calculations. You should avoid I/O, signal catching, etc. Consult CSS for
specific information about what is appropriate for including in user-added C code.
The geo_*.c files in the standard spec distribution that contain the X-ray diffrac-
tometer geometry code are examples of site-dependent code.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 195

Within u_hook.c there is a routine called init_calc() . This routine is called once
when spec starts up. Within init_calc() , calls to the routine

ins_calc(num, func)
int (*func)();

insert the C routine func in a table of functions. These functions are called when
calc(num) or calc(num, arg) is typed as a command to spec. The routine func()
should be specified as either

func(num)

or
func(num, arg)
double arg;

depending on whether calc() is to be invoked with one or two arguments.

Any return value from func() is ignored. However, you can have the calc() routine
return a value by assigning a number to the variable

extern double calc_return;

in func() . If no explicit assignment is made to calc_return , calc() returns zero.

The argument num can be from 0 to 63, but must be chosen not to conflict with any of
the other ins_calc() entries already existing in u_hook.c.

You can also create built-in arrays of double precision, floating point numbers that
can be used to communicate values between your C code and the user of the program.
The routine

ins_asym(x, n, s)
double **x;
char *s;

inserts the array x consisting of n elements into the table of built-in symbols. The
character pointer s points to a string containing the name used to refer to the array
from spec command level. For example,

#define N_PARAM 28
double *gparam[N_PARAM];
init_calc() {

...
ins_asym(gparam, N_PARAM, "G");
...

}

inserts the 28-element array referred to as G[] into the program. Since the array
gparam[] is an array of pointers, you must use the indirection operator (*) when
referring to the values of the floating point numbers in your C code, as in

196 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

...
*gparam[3] = 1.54;
...
if (*gparam[2] == 0)

...

If you make any changes to u_hook.c, you must relink and reinstall the spec binary.

Upda ting spec
spec updates are normally extracted into a directory named after the spec version
number, as in /usr/specadm/spec4.04.01 for version 4.04.01 of the software. The
instructions above for extracting the distribution and installing the files also apply to
updates.

Existing settings and config files from a previous installation will not be disturbed
during an update. Each user’s state file will also remain intact, although it is recom-
mended that users start out fresh (by typing fourc −f) after new versions are
installed to incorporate improvements to the standard macros in their state files.
Occasionally, new versions will not be compatible with previous state files, and spec
will automatically throw out the old state files, print a message and start fresh any-
way. Use the tidy_spec utility to clean out old state files to free up disk space, espe-
cially if the old state files are obsolete with the newer version of spec.

Update notes that accompany each new distribution indicate whether new versions of
any drivers need to be installed. Also, the help file changes will contain summaries of
the significant bug fixes and improvements to spec included in the update.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 197

Installed Files
File Hierarchy

After installation and site configuration on a computer running, for example, both a
four-circle and a z-axis diffractometer, the spec file hierarchies would appear some-
thing like the following,

|-camac
|-chelp
|-contents
|-dpmake
|-fourc

/usr/local/bin--------|-scans
|-showscans
|-show_state
|-tidy_spec
|-wiz_passwd
|-zaxis

|-README
|-chk_file
|-edconf |-config
|-four.mac |-settings
|-fourc---------|-conf.mac
| |-userfiles-----|
|
|-data_pipe-----|-data_pipe.mak
| |-data_pipe.o
| |-pipe_test.c
| |-user_pipe.h
|
|-help----------|-angles
| |-ackno
| |-changes
| |-config
| |- ...
|
|-hgr-----------|-x11filt
| |-pcfilt
| |- ...

/usr/local/lib/spec.d-|-io_enable
|-show.awk
|-site.mac
|-site_f.mac
|-standard.mac |-config
|-zaxi.mac |-settings |-user_ttyL
|-zaxis---------|-conf.mac |-user_ttyM

|-userfiles-----|-user_ttyP
|-user_ttyS
|- ...

where /usr/local/bin is the installation directory, configured as INSDIR in the

198 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Makefile, and /usr/local/lib/spec.d is SPECD , the auxiliary file directory. Of the pro-
grams installed in /usr/local/bin, contents and showscans are described in the User
Manual, while the camac utility program is described below. The chelp utility is a
stand-alone help file viewer that allows browsing of the spec help files without hav-
ing to run spec.

The subdirectory fourc contains the files specific to the four-circle diffractometer. The
name fourc matches the name by which the program is invoked. The first four letters
of the name determine the geometry configuration. If a single computer is to control
two spectrometers, they could be called fourcL and fourcR, and the Install program
would create separate subdirectories called by those names for each.

Within the diffractometer directory is the associated configuration file, config, which
specifies the hardware and the motor parameters to be used. Also associated with
each diffractometer is the settings file that tracks changes in the motor position and
limit settings. The edconf program can be used to to modify the contents of these two
files.

The subdirectory userfiles contains each user’s state files on a per terminal basis.
These files allow the user to exit spec and restart at a later time, retaining macro
definitions, variable assignments, etc. The spec administrator may, from time to
time, delete old state files for users not expected back again, especially if disk space is
a problem. The tidy_spec program reports on the disk usage of all the userfiles direc-
torys and provides options for removing files by age, user, tty or spectrometer geome-
try. Type tidy_spec − from the shell for usage options.

The CAMAC Debugging Program

The utility camac is a program that allows you to debug some CAMAC modules, but
only on systems that use a CSS-provided CAMAC kernel driver. Invoked as
camac −z , it will initialize the crate by issuing a dataway Z. Without arguments, the
program lets you send arbitrary commands to any module. See the source code in
drivers/camac.c for details on how the program works. The camac program only
works when the CAMAC access is through CSS supplied drivers. Within spec, the
functions ca_cntl() and ca_fna() allow similar functionality for debugging CAMAC
devices.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 199

Ena bling I/O Por ts On PC Platfor ms (not linux)

The spec distribution includes a program called io_enable for use on systems derived
from AT&T System V/386 UNIX. This program enables user programs (such as spec)
to write to selected I/O ports on the adapter cards plugged into the motherboard.
spec automatically invokes io_enable if the hardware configuration requires it. Ports
only need to be enabled once after booting the computer. The total number of ports
that can be enabled is quite limited, though. The io_enable program must be owned
by root and have set-user-id execute mode.

You can invoke io_enable from the shell using the following syntax:
io_enable [−d] port_address [port_address ...]

The −d option causes the specified ports to be removed from the systems list of
enabled ports. Port addresses must be given as hexadecimal numbers with a 0x pre-
fix. The addresses may be specified either individually, as a hyphen-separated range,
or as a base address followed by a comma and a count. Usage might be,

io_enable 0x300-0x302 0x312,4

to add 0x300, 0x301, 0x302, 0x312, 0x313, 0x314 and 0x315 to the enabled-port list.

Ena bling I/O Por ts On PC Platfor ms Running linux

On PC systems running linux, I/O port access is achieved by changing the process’s
I/O privilege level using the system call iopl(). For this method to work, the spec
executable must be set-user-id root. Note, though, that the root privilege is only
enabled for the duration of the system call. The rest of the time, the process only has
the access privileges of the real user. (Prior to spec release 4.03.01, I/O port access
on linux required a kernel patch.)

200 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Ena bling E/ISA I/O Por ts On HP 700 Systems

The process for making the E/ISA I/O ports on HP 700 platforms involves a few steps.
A config file for the HP eisa_config utility is required, such as the following, which is
appropriate for the Oregon Micro Systems PC boards:

BOARD
ID = "OMS0001"
NAME = "OMS PCX/PC38 Motor Controllers"
MFR = "Oregon Micro Systems"
CATEGORY = "OTH"
SLOT = ISA8
IOCHECK = INVALID
DISABLE = UNSUPPORTED

FUNCTION = "I/O Registers"
TYPE="OTH"
CHOICE="default"
LINK

PORT = 330h
SIZE = BYTE
SHARE = NO

LINK
PORT = 331h
SIZE = BYTE
SHARE = NO

LINK
PORT = 332h
SIZE = BYTE
SHARE = NO

LINK
PORT = 333h
SIZE = BYTE
SHARE = NO

A similar file needs to be created for each ISA card you intend to use with spec and
placed in the directory /etc/eisa with a name that matches the board ID, as in
!OMS0001.CFG for ID = "OMS0001" . The IDs are arbitrary for ISA boards. Be sure
to enter the PORT addresses for all the I/O ports to be used on the card.

After the configuration files are installed, you must run the HP eisa_config utility to
save the configuration. You must also reboot the computer to make the boards avail-
able.

When spec starts up, it will use the CSS hp_ports utility to create a special file that
will be used to access the ports. For example, the special file /dev/ioports/0x330 will
be created to access the ports described in the example above. spec will create one
special file for each eight consecutive I/O ports.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 201

The Configuration Editor

The edconf program is the primary means for maintaining the hardware configura-
tion. When running spec, edconf is usually run by invoking the config macro.
Without arguments, edconf will use the config and settings files in the current direc-
tory. If given a directory name as an argument, it will use the files in that directory.
If invoked with the −s flag, edconf will run in simulate mode, allowing you to view
but not modify the files. If you do not have write permission for the config file, edconf
will automatically run in simulate mode.

To get a list of the available commands while running edconf, type a question mark
(?). The following commands are available:

Arrow keys Move around.
h j k l Move left, down, up, right.

<return> Enter data or move down one row.
<space> Move right.

ˆF Scroll forward through motors on the Motor screen,
counters on the Scalers screen, devices on the CA-
MAC screen, items on the drop-down menus, etc.

ˆB Scroll backwards, as above.
’ Enter to change string-valued cell (e.g. motor names).

+ − > < Step through list of choices (if <> appears in label).
r Reread settings and config files.
w Write settings and config files.
R Read from backup settings and config files.
c Change to next screen.
M Change to Motor screen.
m Step through motor parameter screens.
C Change to CAMAC screen.
I Change to Interfaces screen.
D Change to Devices screen.
A Change to MCA/CCD Acquisition screen
S Change to Scalers (counters) screen.
i Insert a motor at current position.
d Delete the motor at current position.
G Toggle all-motors mode with linked configurations.
ˆD Blank out optional motor parameter fields.
ˆL Refresh the screen.

202 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

ˆW Gain wizard access to set protections.
H Print help information for current screen.
? Print command help window.

ˆC Exit.

There are five types of data cells in the configuration spread sheet. For number-val-
ued cells, simply enter the number value when the cell is highlighted. For string-val-
ued cells, such as motor names, you must first type a single quote (’) before entering
the string. For YES/NO cells, type a y or an n . The fourth type of cell has the charac-
ters <> before the cell label. For these cells, use the + , − , < , or > keys to step through
the possible choices. For all types of cells, the <return> key enters the values. The
fifth type of cell is used for entering motor unit/channel values. For these cells, type
just the channel number for unit zero, or type both numbers separated by a literal / .

Use the w command to write out the configuration, and use ˆC to exit the program.

The Settings File

The settings file is a binary file that contains consecutive data for each motor accord-
ing to the following structure:

struct sav_mot {
long sm_pos; /* Current dial position */
float sm_off; /* Current user/dial offset */
double sm_low; /* Software low limit */
double sm_high; /* Software high limit */

};

The settings file must have write permission for everybody who runs spec, as it is
updated every time someone moves a motor or changes an offset or limit. When spec
starts out, it checks to see if there is At present, there is no fail-safe file locking
mechanism to prevent more than one program from writing to the settings file at the
same time. It is up to the users to make sure they are not running two versions of
spec on the same computer using the same diffractometer or that they are not run-
ning edconf and moving motors with spec at the same time.

The Config File

The config file is an ASCII file that describes the diffractometer hardware configura-
tion. Although the config file can be edited by hand, you will be safer using the
edconf program to make modifications as edconf insures the config file obeys the
structuring rules required by spec.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 203

Comment lines in the config file begin with a # . Other lines contain key words speci-
fying devices, CAMAC slots or motor and counter parameters. Key words are fol-
lowed by a space-delimited equals sign and one or more parameters.

The config_adm help file contains up-to-date information about currently recognized
key words and supported hardware devices. The Hardware Reference section of the
manual describes the specific hardware devices recognized by spec and indicates the
config file syntax required to specify each device.

CAMAC Slots

CAMAC slot assignments in the config file consist of a module code on the left and a
slot number on the right. For example,

CA_KS3610 = 2

tells the program a Kinetic Systems 3610 hex scaler is in slot 2.

The following modules names are recognized by spec. More than one of the modules
marked with an asterisk are allowed. Append _# to number modules consecutively,
where # is 0 , 1 , 2 , etc.

CA_BR5302∗ BiRa 5302 ADC as counters
CA_DSP2190 DSP Technology MCS Averager
CA_DXP∗ XIA DXP MCA
CA_E250∗ DSP E250 12-Bit D/A as Motor Controller
CA_E500∗ DSP Technology E500A Stepper Motor Controller
CA_IOM1 BiRa 2601 I/O For E500 Multiplexing
CA_IOM2 F16,A0 I/O For E500 Multiplexing
CA_IOM3 F16,A1 I/O For E500 Multiplexing
CA_IO∗ Any module to be accessed with F codes of 0 or 16
CA_KS3112∗ Kinetic Systems 3112 D to A (as motor controller)
CA_KS3116∗ Kinetic Systems 3116 16-Bit D/A as Motor Controller
CA_KS3195∗ Kinetic Systems 3195 16-Bit D/A as Motor Controller
CA_KS3388 Kinetic Systems 3388 GPIB interface
CA_KS3512∗ Kinetic Systems 3512/14 ADC as counters
CA_KS3610 Kinetic Systems 3610 6-Channel, 50 MHz Counter
CA_KS3640C∗ Kinetic Systems 3640 Up/Down Counter as Counter
CA_KS3640M∗ Kinetic Systems 3640 Up/Down Counter (for SMC’s)
CA_KS3640T Kinetic Systems 3640 Up/Down Counter as Timer
CA_KS3655 Kinetic Systems 3655 8-Channel Timing Pulse Generator
CA_KS3929 Kinetic Systems 3929 SCSI Crate Controller
CA_KS3929_HP Kinetic Systems 3929 SCSI to CAMAC on HP

204 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

CA_LC2301 LeCroy 2301 interface for QVT MCA
CA_LC3512 LeCroy 3512 Spectroscopy ADC
CA_LC3521 LeCroy 3521A Multichannel Scaling
CA_LC3588 LeCroy 3588 Multichannel Scaler
CA_LC4434∗ LeCroy 4434 32-Channel Scaler
CA_LC8206 LeCroy MM8206A Histogramming Memory
CA_QS450∗ DSP Technology QS-450 4-Channel Counter
CA_RTC018 DSP Technology RTC-018 Real Time Clock
CA_RTC018M DSP RTC-018 2nd Unit For Monitor
CA_SMC∗ Joerger Stepper Motor Controller SMC-L or SMC-24
CA_TS201 DSP Technology TS-201 Dual Timer/Scaler

Motor Parameter s

Motor parameter assignment consists of key words of the form MOT000 , MOT001 , ...,
followed by 11 values. The MOT key words must be numbered consecutively starting
at zero. The values are:

1 Controller type (E500, SMC, OMS, ...)
2 Steps per unit (degrees, mm, ...) (sign changes direction of motion)
3 S� �� � � �
 �� � � � � �� � � � � � � � �� � �
4 Steady state rate (Hz) (must be positive)
5 Base rate (Hz) (must be positive) (also used as backlash rate)
6 Steps for backlash (sign changes direction of motion)
7 Acceleration time (msec)
8 Not used
9 Motor flags in hexadecimal (protection, units, etc.)

10 Motor mnemonic (th, phi, sl1, ...)
11 Motor name (Theta, Phi, Slit 1, unused, ...)

An example is:
Motor cntrl steps sign slew base backl accel nada flags mne name
MOT000 = E500 −2000 1 2000 200 50 125 0 0x003 tth Two Theta

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 205

Valid controller types currently include:

18011 Oriel Encoder Mike Controller 18011
18092 Oriel Encoder Mike 18092
ANORAD Anorad I-Series Controller
ANORAD_E As above, but with encoder
CM3000 Compumotor 3000
CM4000 Compumotor 4000
CMSX Compumoter SX
CMSX_E As above, but with encoder
DAC_B12 PC DAC 12-Bit D/A (binary output)
DAC_B16 PC DAC 16-Bit D/A (binary output)
DAC_T12 PC DAC 12-Bit D/A (two’s complement)
DAC_T16 PC DAC 16-Bit D/A (two’s complement)
E250 DSP E250 12-Bit D/A as Motor Controller
E500 DSP Technology E500A
E500_M As above, but with multiplexor
ECB_M RISO ECB Motors
EPICS_M1 EPICS using spec’s config motor parameters
EPICS_M2 EPICS using EPICS’ database motor parameters
ES_OMS ESRF using VME OMS
ES_VPAP ESRF using VME Vpap
GALIL Galil DMC-1000 PC Board
HLV544 Highland Technology VME V544
HUB9000 Huber 9000
IP28 Micro-Controle IP28
ITL09 Micro-Controle ITL09
ITL09_E As above, but with encoder
IXE Phytron IXE
KS3112 Kinetic Systems 3112 12-Bit D/A
KS3116 Kinetic Systems 3116 16-Bit D/A
KS3195 Kinetic SystemsS 3195 16-Bit D/A
MAXE ESRF VME MAXE Motor Controller
MAXE_E As above, but with encoder
MAXE_S As above, but with servo
MAXE_DC ESRF VME DC Motor Controller
MC4 Klinger MC4
MCB Advanced Control Systems MCB
MCU Advanced Control Systems MCU
MCU_E As above, but with encoder
MCU_H As above, with with Heidenhain encoder

206 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

MCU_O As above, but with old PROMs
MM2000 Newport MM2000/3000
MM2000_E As above, but with encoder
MM2500 Newport MM2500
MM2500_E As above, but with encoder
MM4000 Newport MM4000/4005
MM4000_E As above, but with encoder
MMC32 NSLS homemade
MURR Missouri Research Reactor Motors
MURR_E As above, but with encoder
NF8732 New Focus Picomotor 8732
NONE Pseudo controller
NSK NSK Motor Controller
NT2400 Laboratory Equipment Corporation Model
OMS Oregon Micro Systems PCX/34/38/39/48
OMS_E As above, but with encoder
PI PI DC Motor Controller
PM500 Newport PM500
RIGAKU Rigaku RINT-2000 Motor Controller
SCIPE_A SCIPE Actuator Device
SIX19 Micro-Controle SIX19
SMC Joerger Single Motor Controller
SPI8 Advanced Control System SPI-8
TSUJI Tsuji PM16C-02N
XIAHSC XIA HSC-1
XRGCI_M Inel XRGCI motor controller/timer

Field 2, the steps per unit, may be non-integral, and the units can be in degrees, mil-
limeters or whatever. The rest of the numeric fields must be integral. The motor
names should be kept to nine characters or less, as the standard macros truncate
them to fit a nine-character field when printing them out.

Field 8 is reserved.

Field 9, the flags field, contains several kinds of information. The lowest order two
bits are used to enable particular operations on the selected motor. If bit 0 is set, the
user can move the motor. If bit 1 is set, the user can change the software limits of the
motor. Bits 2 and 3 are used by the edconf program to prevent users from changing
certain configuration information. Bits 8 through 12 are used with the shared config
file feature described below.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 207

Optional motor parameters appear on lines following the MOT keywords and are of the
form

MOTPAR:dcgain = 1500

Each MOTPAR refers to the immediately preceding motor. Possible parameters are:
encoder_step_size
step_mode
slop
home_slew_rate
home_base_rate
home_acceleration
dc_dead_band
dc_settle_time
dc_gain
dc_dynamic_gain
dc_damping_constant
dc_integration_constant
dc_integration_limit
dc_following_error
dc_sampling_interval
deceleration
read_mode
torque
misc_par_1
misc_par_2
misc_par_3
misc_par_4
misc_par_5
misc_par_6

Most parameters are not used by most motor controllers.

Linked Configurations

An installation such as a synchrotron beamline uses many motors with most associ-
ated with beamline control. Spectrometers used for particular experiments have
motors that aren’t used in other experiments. To avoid having to merge the motor
configurations and settings from one set of files to another when the spectrometer is
changed, you can set things up so that a single version of the config and settings files
will describe a number of different spectrometers. Here is how to set up the files:

(1) If you already have several geometry configurations installed, you should
make backup copies of the config and settings files from the current geome-
tries.

(2) If you already have several geometry configurations installed, remove the con-
fig and settings files from all but one of the geometry directories. Save the

208 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

config file that has the most motors, as you will have to add motors from the
other geometries to the remaining config file.

(3) Set up hard links in all the geometry directories so that the config and set-
tings in all the geometry directories refer to the same file. For example, if the
files already exist in the fourc directory, use the commands

ln fourc/config surf/config
ln fourc/settings surf/settings

to create hard links in the surf directory. Don’t use symbolic links.

(4) Edit the config file by hand to add new control lines that assign numbers to
the different geometries. These control lines must be before the lines that
assign motor information. The format of the geometry control lines is as fol-
lows:

GEO0 = common
GEO1 = fourc
GEO2 = surf
GEO3 = fivec
etc.

The parameter GEO0 always refers to the motors that are common to all the
geometries. Subsequent lines assign consecutive numbers to the other geome-
tries.

(5) Now run edconf. The motor screen will have a new field that lets you assign a
spectrometer geometry to each motor or to make the motor in common with
all the spectrometers. You can do the same for each scaler on the scaler
screen (as of release 4.03.12).

The hard links must be maintained for the shared config and settings file scheme to
work. You can safely use vi and cp to manipulate the files. However, using mv will
destroy the links. Also, the editor ned will destroy the links.

When running edconf with a geometry directory as an argument or when invoking
the config macro from spec, use the G command to toggle between displaying all the
motors and scalers in the config file and just those motors and scalers used by the
given geometry.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 209

Secur ity Issues
At some installations, you may wish to prevent ordinary users from accessing
selected motors. spec offers several levels of security. The security works with the
UNIX file ownership and protection mechanisms, so it is important that user and
group ownership of the configuration files and file write permission be properly set.

To restrict configuration modification to a single user or group, you must set the write
permission of the diffractometer’s associated config file accordingly. Type
chmod 644 /usr/lib/spec.d/fourc/config to allow only the owner of the file to
modify it. Setting the mode to 664 allows users in the owner’s group to also modify
the file.

There are there basic levels of security for each motor. The first level is the most
restrictive, as it prevents the motor from being moved and prevents changes to the
position being made in the settings file. The motor position can still be read from the
motor controller, though, and the user angle can still be changed using the chg_off-
set() function (invoked by the set macro). If there is ever a conflict between the
current position and the position in the settings file, such as might happen if the
power was turned off to the motor controller, the controller registers are automati-
cally adjusted to match the position in the settings file without moving the motor.

The second level of security allows a motor to be moved, but prevents the software
limits from being changed. Not only is the set_lim() command restricted, but also
the chg_dial() command, as a change in the dial position would effectively change
the position of the limits.

The third level offers no security and allows any operation on a motor.

When these motor restrictions are set in the config file, the restrictions apply to
everyone, even the owner of the config file. To move a restricted motor, you must first
change the config file.

Extra Protection

At some spec installations, the administrators need to prevent users from accessing
or modifying the configuration of certain motors. The edconf program supports a wiz-
ard mode that allows such protection. You will need to create a user in the system
password file named specwiz. If you type ˆW while running edconf you will be
prompted for the wizard’s password. If you enter it properly, you will be able to select
additional levels of configuration protection.

To prevent users from disabling the wizard protections by editing the config file by
hand, you can use file protection features built in to UNIX. One possibility is to make

210 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

the edconf program set-user id specwiz or specadm, change the ownership of the con-
fig files to specwiz or specadm, and change the modes of the config files to rw−r−−r−− .
Do that using commands (as super user) like

chown specadm edconf fourc/config surf/config ...
chmod u+s edconf
chmod 644 fourc/config surf/config ...

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION ADMINISTRATOR’S GUIDE 211

212 ADMINISTRATOR’S GUIDE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

HARDWARE REFERENCE

214 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Introduction
spec includes built-in support for a wide variety of motor controllers, counters,
timers and other data acquisition devices, allowing great flexibility in a site’s hard-
ware configuration. Information on currently supported devices follow. Support for
additional devices is continually being added.

Interface Controller s and General Input/Output
The interface screen of the configuration editor is selected using the I command.
Before any interfaces have been configured the screen looks like:
Interface Configuration

CAMAC DEVICE ADDR <>MODE <>TYPE
NO

GPIB DEVICE ADDR <>MODE <>TYPE
0 NO

VME DEVICE ADDR <>TYPE
NO

SERIAL DEVICE <>TYPE <>BAUD <>MODE
0 NO
1 NO
2 NO
3 NO

IO PORT ADDR <>MODE NUM
NO
NO
NO
NO

Type ? or H for help, ˆC to quit

The following sections explain the choices for each type of interface. To select a par-
ticular interface, use the arrow keys to move to the cell containing the word NO and
type y for yes and then <return> . For CAMAC, GPIB and VME devices, move the
cursor to the last column and use the < or > keys to select the correct device and then
enter <return> .

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 215

CAMAC Controller s

spec supports only one CAMAC controller at a time. The following CAMAC crate
controllers are available:

config file Description
PC_DSP6001 DSP 6001 with PC004 (no driver)
GP_CC488 DSP CC-488 GPIB Crate Controller
CDEV DSP-6001/DCC-11/KS-3912 Boards
CA_JOR73A Jorway 73A SCSI to CAMAC
CA_KS3929_HP KS 3929 SCSI to CAMAC on HP
CA_KS3929 KS 3929 SCSI to CAMAC on Sun
GP_KS3988 KS 3988 GPIB Crate Controller
PC_KSC2926 KSC 2926 with 3922 (no driver)
CA_KSC Kinetic Systems CAMAC driver

To select one, move the cursor to the NO box under CAMAC and type y and <return> .
Then move the cursor to the rightmost column and type < or > until the appropriate
controller appears and then enter <return> . Finally, select appropriate parameters
from the other columns.

CAMAC Controller s That Use spec Dr iver s

config file:
CDEV = device_name INTR|POLL

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE

YES /dev/ca00 INTR DSP-6001/DCC-11/KS-3912 Boards

spec drivers are available for the DSP 6001/6002 with PC004 for PC platforms, the
Kinetic Systems 3922 with 2926 for PC platforms, or the Kinetic Systems 3912
CAMAC controller for BSD and Ultrix platforms. The appropriate CSS driver must
be installed in each case. The PC platform controllers may be used in a polled or
interrupt-driven mode. In interrupt-driven mode, a CAMAC look-at-me (LAM) will
generate a call to a spec interrupt service routine.

To use the DSP 6001/6002 controllers in interrupt-driven mode, the boards must be
modified to give the module a software programmable interrupt-enable capability.
The modifications involve cutting four traces and soldering four jumper wires on one
of the boards in the 6001/2 module. Contact CSS to obtain the explicit instructions.
No modifications are required to operate the controller in polled mode.

216 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

DSP 6001/6002 CAMAC With No Driver

config file:
PC_DSP6001 = base_address

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE

YES 0x240 DSP 6001 with PC004 (no driver)

Use this entry to select the DSP 6001/6002 CAMAC controller on a PC, if you aren’t
using a driver. No interrupt is used in this configuration.

Kinetic Systems 3988 GPIB To CAMAC

config file:
GP_KS3988 = gpib_address INTR|POLL

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE

YES 7 POLL KS 3988 GPIB Crate Controller

Use this configuration for the Kinetic Systems 3988 GPIB-to-CAMAC controller.
This controller may be used in a polled or interrupt-driven mode. In interrupt-driven
mode, a CAMAC look-at-me (LAM) generates a GPIB service request (SRQ), which in
turn, will call a spec interrupt service routine. Interrupt-driven mode is currently
only available with National Instruments GPIB controllers, and only when not using
the cib.o GPIB configuration (see below). If multiple versions of spec are sharing the
controller on the same computer, the controller must be operated in polled mode.

DSP CC-488 GPIB To CAMAC

config file:
GP_CC488 = gpib_address INTR|POLL

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE

YES 7 POLL DSP CC-488 GPIB Crate Controller

This configuration is for the DSP CC-488 GPIB-to-CAMAC controller. This controller
may be used in a polled or interrupt-driven mode. In interrupt-driven mode, a
CAMAC look-at-me (LAM) generates a GPIB service request (SRQ), which in turn,
will call a spec interrupt service routine. Interrupt-driven mode is currently only
available with National Instruments GPIB controllers. If multiple versions of spec

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 217

are sharing the controller on the same computer, the controller must be operated in
polled mode.

Jorway 73A SCSI To CAMAC

config file:
CA_JOR73A = device_name

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/sga Jorway 73A SCSI to CAMAC
YES /dev/scsi/1 Jorway 73A SCSI to CAMAC

The Jorway 73A SCSI-to-CAMAC controller is supported on HP 700 Series and linux
platforms. Note, the four-position “piano” switch should be left in the factory configu-
ration, with positions 1, 2 and 3 off, and position 4 on.

Kinetic Systems 3929 SCSI To CAMAC

config file:
CA_KS3929 = device_name

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/sga KS-3929 SCSI to CAMAC
YES /dev/ksc0 KS-3929 SCSI to CAMAC
YES /dev/scsi/1 KS-3929 SCSI to CAMAC

This Kinetic Systems SCSI-to-CAMAC controller is available on SunOS 4.x SBus
platforms, where a CSS provided driver can be installed. On linux and HP 700
Series workstations, spec provides direct software support. In all cases, this con-
troller only operates with spec in a polled mode. In addition the software interface
available from Kinetic Systems is supported (see below).

218 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Kinetic Systems CAMAC Software

config file:
CA_KSC = device_name

edconf interfaces screen:
CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/rcamac Kinetic Systems CAMAC Driver

Kinetic Systems sells software interfaces for some of their CAMAC controllers on
some UNIX platforms. Presently, only the package for the 3929 SCSI-to-CAMAC con-
troller on the HP700 platform has been used with spec. To use the Kinetic Systems
software, the location of the their object module must be given in response to the
"KSC 3929 SCSI-CAMAC file location" query when running the Install program.
(Note, however, there is no reason to use the rather expensive KSC software for the
3929 on the HP platform as CSS provides bundled support.)

GPIB Controller s

spec works with a variety of GPIB controllers as described below. (In addition, the
Kinetic Systems 3388 CAMAC-to-GPIB controller is available.) Up to four GPIB con-
trollers can be configured simultaneously.

On platforms that implement the System V interprocess communications (IPC)
semaphore and shared-memory system calls, more than one spec process can share a
single GPIB controller. For those systems, each spec must have the shared version
of the GPIB controller selected. In the config file, a _L is appended to the module key
word to indicate the shared version. If multiple GPIB controllers are configured, the
controller unit number of the shared controller must be the same in each version of
spec.

spec uses the GPIB controllers at board (as opposed to device) level, which makes it
unlikely that other programs can use a GPIB controller while spec is using it.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 219

National Instruments GPIB with National Instruments Driver s

The National Instruments GPIB boards and drivers should be installed according to
National Instruments instructions. spec communicates with the boards using only
the device node /dev/gpib0.

(On System V PC Platforms, where the GPIB driver is linked into the kernel, and the
kernel is patched using the ibconf program, you should run ibconf directly on the
driver file, so that each time you rebuild a kernel, you won’t need to rerun ibconf.
Thus, you might run

ibconf /etc/conf/pack.d/ib2/Driver.o

after the driver has been installed.)

When you do configure /dev/gpib0 with the ibconf program, set the controller pri-
mary address to 0, the secondary address to none, board-is-system-controller mode to
yes and disable-auto-serial-polling mode to yes.

Other board configuration parameters are programmed by spec each time it is run,
thus overriding any values you may set using the ibconf program. Those parameters
are: timeout setting, EOS byte, terminate-read-on-EOS mode, type of compare on
EOS, set-EOI-w/last-byte-of-write mode and UNIX signal. The special nodes that may
be created for each individual device by the National Instruments installation pro-
gram are not used at all.

National Instruments GPIB with cib.o

config file:
PC_GPIBPC4 = device_name
PC_GPIBPC4_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst with cib.o
YES /dev/gpib0 Nat Inst with cib.o (shared)

National Instruments provides a C language interface to its driver on most platforms
in a file called cib.c. For some older versions of the National Instruments driver,
spec has built-in C code that can be used instead of the National Instruments C
interface. When using the National Instruments cib.o file, it isn’t possible for GPIB
devices that generate service requests (SRQ) to generate interrupts. Such devices
must be used in polled mode.

In addition to specifying this choice in the config file, the location of the cib.o file must
be entered when spec is installed. (See Page 191 in the Administrator ’s Guide.

220 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Any of the National Instruments boards (except the DEC MicroVax board) can be
used with the cib.o file.

National Instruments GPIB on linux

config file:
PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0/master National Instruments GPIB
YES /dev/gpib0/master Nat Inst GPIB (shared)

On linux platforms, there is a freely available GPIB driver for National Instruments
boards available by anonymous ftp from the site koala.chemie.fu-berlin.de in the
directory /pub/linux/LINUX-LAB/IEEE488. That driver should be installed and
configured according to the documentation in the driver package. Note, however,
that the DMA option in the driver installation should not be selected, as the imple-
mentation of DMA in the driver is notoriously flakey. The only part of the driver
package needed by spec is the driver/gpib0.o module. spec does not use any of the
application library included with the driver package. The file /etc/gpib.conf associ-
ated with the application library, so also is not used by and does not influence spec.
Also, spec communicates with the driver directly through the /dev/gpib0/master
device node. No other device nodes are used.

National Instruments GPIB-ENET

config file:
PC_GPIBPC5 = hostname
PC_GPIBPC5_L = hostname

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES gpib0 Nat Inst GPIB-ENET
YES gpib0 Nat Inst GPIB-ENET (shared)

spec must be linked with the National Instruments cib.o module that comes with the
GPIB ethernet device. On the edconf interfaces screen, enter the name of the board
as indicated by the National Instruments ibconf utility.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 221

National Instruments PCII GPIB on PC UNIX System V Platfor ms

config file:
PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst GPIB PCII
YES /dev/gpib0 Nat Inst GPIB PCII (shared)

The PCII board is an old model, but is still supported by spec. This selection uses
spec’s built-in code. The cib.o file configuration described earlier may also be used.

National Instruments AT-GPIB on PC UNIX System V Platfor ms

config file:
PC_GPIBPC2 = device_name
PC_GPIBPC2_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst AT-GPIB
YES /dev/gpib0 Nat Inst AT-GPIB (shared)

The AT-GPIB board is a current model. This selection uses spec’s built-in code. The
cib.o file configuration described earlier may also be used.

National Instruments GPIB on SCO UNIX and IBM AIX Platfor ms

config file:
PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 National Instruments GPIB
YES /dev/gpib0 Nat Inst GPIB (shared)

spec’s built-in code should work with SCO UNIX, IBM PS/2 and IBM RS/6000 plat-
forms with this configuration choice. If new versions of the National Instrument
drivers don’t work, switch to the cib.o file configuration, described previously.

222 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

National Instruments SB-GPIB Ver 1.3 on SunOS 4.x Platfor ms

config file:
PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst SB-GPIB Ver 1.3
YES /dev/gpib0 Nat Inst SB-GPIB Ver 1.3 (shared)

This old version of the driver is supported with built-in code.

National Instruments GPIB 1024-1S on SunOS 4.x Platfor ms

config file:
PC_GPIBPC2 = device_name
PC_GPIBPC2_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst GPIB 1014-1S
YES /dev/gpib0 Nat Inst GPIB 1024-1S (shared)

An old version of the driver for this board is supported with built-in code.

National Instruments SB-GPIB Ver 2.1 on SunOS 4.x Platfor ms

config file:
PC_GPIBPC3 = device_name
PC_GPIBPC3_L = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst SB-GPIB Ver 2.1
YES /dev/gpib0 Nat Inst SB-GPIB Ver 2.1 (shared)

This old version of the driver for this board is supported with built-in code.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 223

National Instruments GPIB on DEC MicroVax

config file:
PC_GPIB11 = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/ib DEC GPIB11V-2 For Q-Bus

National Instruments distributes the driver source code for this module and plat-
form. The driver is unlikely to updated, so spec should continue to work with this
module and platform indefinitely. No cib.o file is available for this platform.

HP SICL GPIB On HP Platfor ms

config file:
PC_SICL_H = sicl_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES hpib HP SICL GPIB

This configuration choice supports HP’s GPIB using HP’s SICL interface library.
When the spec Install script is run, the question regarding GPIB SICL must be
answered with “yes”, and a libsicl.a or libsicl.sl must be available on the system for
the SICL GPIB board to be available. If using the HP E2050 LAN/HP-IB Gateway,
the device name is of the form lan[hostname]:interface where lan is the symbolic
name for the device set in the /usr/pil/etc/hwconfig.hw file, hostname is the host
name or IP address of the gateway and interface is the interface as set for the
host-name parameter in the gateway on-board configuration.

IOtech SCSI To GPIB On HP Platfor ms

config file:
PC_SICL_H = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES /dev/IOtech1 IOtech SCSI488/H SICL GPIB

This configuration uses IOtech’s SCSI-to-GPIB interface on an HP 700 Series work-
station with the IOtech SICL software. When the spec Install script is run, the flags
required to load the GPIB SICL library must be entered. Note, CSS has available a

224 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

modified version of the standard libsicl.a that doesn’t use the ieee488 daemon pro-
gram, but does allow multiple processes to access the GPIB controller. Contact CSS
to obtain the modified version of the library.

IOtech SCSI To GPIB on Sun Platfor ms

config file:
PC_IOTECH = device_name

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES <eee488/ieee IOtech SCSI488/S GPIB

Use this configuration for the IOtech SCSI-to-GPIB on a SunOS 4.x platform.

The full name of the default device is /dev/ieee488/ieee. (The edconf program only
displays the last twelve characters of long device names unless the cursor is on the
device name cell.)

Scientific Solutions IEEE-488 on PC Platfor ms

config file:
PC_TEC488 = base_address
PC_TEC488_L = base_address

edconf interfaces screen:
GPIB DEVICE ADDR <>TYPE
YES 0x300 Scientific Solutions IEEE-488
YES 0x300 Scien Solut IEEE-488 (shared)

Only the Scientific Solutions (Tecmar) GPIB board (old style) is currently supported
by spec (not the GPIB-LM model). Very old models of the board do not work. The
card is accessed completely through user-level I/O. No kernel driver is needed.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 225

Kinetic Systems 3388 CAMAC-To-GPIB Module

config file:
CA_KS3388 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 KS3388 KS 3388 GPIB Interface

When using the Kinetic Systems 3388 GPIB-to-CAMAC module, you must set the
talk/listen address switch inside the module to correspond to address zero.

VME Controller s

National Instruments VME with National Instruments Driver s

config file: edconf
PC_NIVME = /dev/null

interfaces screen:
VME DEVICE ADDR <>TYPE
YES National Instruments VME

spec supports the National Instruments VXI-SB2020 on SunOS 4.1 and the VXI-
AT2023 on System V PC platforms. The NI drivers must be installed, and the loca-
tion of the NI cvxi.o must be specified when spec is installed.

The National Instruments software needs several patches when used on SVR3 PC
platforms. Contact CSS for details.

Bit 3 Model 403 ISA-VME

226 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Bit 3 Model 616/617 PCI-VME

Bit 3 Model 487-1 with Model 933 Driver Software

Bit 3 Model 466-1/467-1 with Model 944 Driver Software

Ser ial (RS-232C) Por ts

config file:
SDEV_# = device_name baud_rate tty_modes

edconf interfaces screen:
SERIAL DEVICE <>TYPE <>BAUD <>MODE

0 YES /dev/ttya1 <> 9600 cooked igncr
1 YES /dev/ttya2 <> 2400 raw
2 NO
3 NO

Serial ports for use with the user-level ser_get() and ser_put() built-in functions
are also selected on the interfaces screen. The device name, baud rate and serial line
modes are selected for up to four serial devices. The number of the device is used as
the first argument to the ser_put() and ser_get() functions. Available tty modes
are either raw or cooked, with cooked mode also having noflow, igncr (a no-op on non-
System V systems) and evenp or oddp options.

The <>TYPE field allows serial devices connected through special software servers
used at ESRF or with EPICS to be selected. For normal serial devices, the field
should contain the characters <> . See the Reference Manual for a description of the
spec functions that access the serial ports.

Generalized CAMAC I/O

config file:
CA_IO = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 IO 0 Generalized CAMAC I/O

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 227

CAMAC modules configured for Generalized CAMAC I/O can be accessed using
spec’s ca_get() and ca_put() functions. (See page 95 in the Reference Manual.)
The module address for those functions is the unit number on the CAMAC configura-
tion screen. Note that even more generalized access is available using the ca_fna()
function. (See page 95 in the Reference Manual.) Arbitrary commands can be sent to
any CAMAC module, whether or not the module is listed in the config file.

PC Por t Input/Output

config file:
PC_PORT_# = base_address number_of_ports read_write_flag

edconf interfaces screen:
IO PORT ADDR <>MODE NUM

YES 0x300 Read 1
YES 0x310 R/W 4
NO
NO

On ISA bus systems on 80x86-compatible systems and on HP 700 platforms with
E/ISA bus support, the ports available for the built-in port_get() , port_getw() ,
port_put() and port_putw() functions are configured on the interfaces screen. The
board’s hexadecimal base address is given, along with the number of contiguous 8-bit
ports (maximum of 16) that can be accessed. The ports can be configured for read-
only access or for read-write access. Be careful not to select port addresses associated
with standard PC hardware such as the video board or the hard disk! Also be sure to
include enough 8-bit ports to handle 16-bit word access, if that is how you will be
using the ports. On the HP platforms, a config file must also be set up in the
/etc/eisa directory using the HP eisa_config utility.

228 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Motor Controller s

Advanced Control System MCB (GPIB and Serial)

config file:
RS_MCB = device_name baud_rate number_of_motors
GP_MCB = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES 6 4 Advanced Control System MCB (GPIB)
YES /dev/tty00 <> 9600 4 Advanced Control System MCB (Serial)

When used on the serial interface, the MCB appears to output characters using even
parity in spite of the board’s jumpers being set to generate no parity. To accommo-
date that hardware idiosyncrasy, spec opens the port using even parity. If future
versions of the MCB generate parity properly according to the jumper settings, the
jumpers should be set for even parity to accommodate spec.

Advanced Control System MCU-2 (Serial)

config file:
RS_MCU = device_name baud_rate number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/ttyS1 <> 9600 12 Advanced Control System MCU

On the Motors screen of the configuration editor, one can select among MCU , MCU_E ,
MCU_H and MCU_O for the controller type.

The MCU_O controller type indicates that the controllers have the old-style firmware
(which doesn’t implement the # start character for message sent to the controllers),
so that spec will not test first for the new-style firmware, thus avoiding timeouts.

The MCU_H controller type is for a special version of the controller which includes a
hardware tie-in for a Heidenhain encoder. For such controllers, the
motor_par("encoder_step_size") parameter is relevant in order to set the ratio
between the Heidenhain encoder readings and the MCU-2 step size. The default
value is 131072 / 360.

The MCU_E type indicates an encoder is used. However, currently, there is no differ-
ence in the software whether MCU_E or MCU is selected.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 229

Please note, many users have had problems establishing initial communication
between the MCU-2 controllers and their computers. The problem is almost always
related to the cable. Standard RS-232C cables do not appear to work. A custom
cable wired according to the diagram in the MCU-2 manual seems to be needed.
Note also, that the connections for pins 2 and 3 may need to be swapped from what is
shown in the manual. Be prepared to try the cable both ways before adding the final
touches.

Command pass through for the MCU-2 controllers is available using the following:

motor_par(motor, "send", cmd) — Sends the string cmd to the MCU channel associ-
ated with motor . For example, set cmd to "J500" to set the jog rate for motor
to 500 steps per second.

motor_par(motor, "read", cmd) — Sends the string cmd to the MCU channel associ-
ated with motor , as above, and returns a string containing the response.

Compumotor 3000 (GPIB and Serial)

config file:
RS_CM3000 = device_name baud_rate number_of_motors
GP_CM3000 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 <> 9600 4 Compumotor 3000 (Serial)
YES 6 4 Compumotor 3000 (GPIB)

Use of this old motor controller is not recommended!

Compumotor 4000 (GPIB and Serial)

config file:
RS1_CM4000 = device_name baud_rate number_of_motors
RS2_CM4000 = device_name baud_rate number_of_motors
GP_CM4000 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 <> 9600 4 Compumotor 4000 (Serial port 1)
YES /dev/tty00 <> 9600 4 Compumotor 4000 (Serial port 2)
YES 3 4 Compumotor 4000 (GPIB)

The Compumotor 4000 can be used on either an RS-232 or GPIB interface. You must
program the RS-232 baud rate or the GPIB address using the Compumotor front

230 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

panel controls. You should consult the Compumotor manual for details, but in brief,
the procedure is as follows. You must first enter the ACCESS code (the factory
default is 4000). You then choose the IMMED function, and then the DEFINE GPIB
ADDR statement to select the the GPIB address. Alternatively, choose the IMMED
function, and the the RS232 PORT1 or RS232 PORT2 statement to select the port
and configure the baud rate for the RS-232 interface.

There are many other configuration options with this controller. Other than the
GPIB address and the baud rate, you should probably not change any of these others.
You can reestablish the factory defaults using the RESET function from the main
menu.

Output pins 46 or 47 on the programmable output connector can be used to gate a
counter during powder-mode scans. While the powder-mode motor is moving during
these scans, spec sets pin 46 high and pin 47 low. Use the one appropriate for your
particular counter. To gate the Ortec 994 counter/timer, for example, pin 46 and an
even-numbered pin (all are logic ground) are connected to the front panel enable BNC
connector on the Ortec module.

Compumotor AX (Serial)

config file:
RS_CMAX = device_name baud_rate number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 <> 9600 4 Compumotor AX Motor Controller (Serial)

Command Pass Through

Command pass through is available using the following functions. Command pass
through should be used with caution to avoid interfering with the built-in program-
ming commands spec sends to the controllers.

motor_par(motor, "send", cmd) — Sends the string cmd to the motor channel associ-
ated with motor .

motor_par(motor, "read", cmd) — Sends the string cmd to the motor channel associ-
ated with motor , as above, and returns a string containing the response.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 231

Compumotor SX (Serial)

DSP E250 12-Bit DAC as Motor Controller (CAMAC)

config file:
CA_E250 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 E250 0 DSP E250 12-Bit D/A as Motor Control

Some spec users use this DAC to control piezo-electric motion devices. Commanding
such a device to move from spec results in an instantaneous change in the output
voltage of the DAC.

DSP E500 Stepper Motor Controller (CAMAC)

config file:
CA_E500 = slot_number
CA_E500M = slot_number
CA_IOM1 = slot_number
CA_IOM2 = slot_number
CA_IOM3 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 E500 0 DSP E500 Stepper Motor Controller
2 IOM1 BiRa 2601 I/O For E500 Multiplexing
3 IOM2 F16,A0 I/O For E500 Multiplexing
4 IOM3 F16,A1 I/O For E500 Multiplexing

Selecting one of the three I/O module configurations above allows spec to multiplex
an E500 motor channel. Currently only one channel of one E500 can be multiplexed.
However, up to sixteen motors can be multiplexed on that channel. Contact CSS for
additional information on the multiplexing circuitry required.

232 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Huber SMC 9000 (GPIB)

config file:
GP_HUB9000 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES 6 8 Huber 9000 Motor Controller (GPIB)

Note, spec does not support the RS-232C interface for this controller, as CSS was
unable to make it work reliably with spec. Note also, a feature of this motor con-
troller is that if a limit switch is hit, communication with the remote computer is
shutdown so that one must manually move the motor off the limit and reset the con-
troller in order to reestablish remote communication.

Inel XRGCI as Motor Controller (Serial)

config file:
RS_XRGCI_M = device_name baud_rate number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/ttyh3 <> 4800 3 Inel XRGCI as Motor Controller

Joerger SMC Stepper Motor Controller s (CAMAC)

config file:
CA_SMC = slot_number
CA_KS3640M = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 SMC 0 Joerger Single Motor Controller
2 KS3640M 0 KS 3640 Counter with Joerger SMC

Joerger controller models SMC-L, SMC-24 and SMC-LP can be used with spec.
None of these models contain absolute motor position registers, so they are generally
supplemented with additional CAMAC counter modules to keep track of motor posi-
tion. spec supports the Kinetic Systems 3640 Up/Down Counter for this purpose.
This module has four 16-bit counters that must be connected in series to form two
32-bit counters. One 3640 module is thus needed for each two SMC modules.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 233

The SMC controllers can be used without a supplemental counter, but spec will not
do as well in keeping track of absolute motor positions.

The Joerger controllers have no provision for a soft abort. If you type ˆC to abort
moving, the controller will simply stop sending pulses to the motors. Inertia may
cause the motors to continue to turn a bit, and absolute positions will be lost. The
only work around for this problem is to keep motor velocities low.

The model SMC-LP allows programmable motor speed and acceleration. According
to the module’s documentation, if the internal frequency adjustments are at the fac-
tory settings, motor speed can be programmed between 50 and 2000 steps per second,
while acceleration time can be varied from 20 to 2000 msec. For the other models,
these parameters are set manually using potentiometers on the module — values
entered in the config file are ignored.

Klinger MC-4 Stepping Motor Controller

config file:
RS_MC4 = device_name baud_rate number_of_motors
GP_MC4 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 <> 4800 4 Klinger MC4 (Serial)
YES 3 4 Klinger MC4 (GPIB)

The Klinger MC-4 can be used on either an RS-232 or GPIB interface.

Back panel switches SW, SX, SY and SZ should each have locations 1 and 2 up and
locations 3 and 4 down (spec does not currently support an origin switch, top zero or
encoders). If you use the MC-4 with a GPIB interface, back panel switch S3 location
4 should be down, indicating a line feed terminator. Use switch S1 locations 1 to 5
select the GPIB address.

If you use the MC-4 with an RS-232 interface, set back panel switch S2 locations 1 to
3 to select the baud rate. Location 4 should be up, indicating software handshake.
Switch S3 location 1 should be down and locations 2 and 3 up, to set 8 bit data words
with 2 stop bits. Switch S3 location 4 should be down, indicating a line feed termina-
tor.

You must connect certain pins together on the general purpose I/O connector on the
back panel of the MC-4 to use the MC-4 with spec. Wire one end of a 1K to 10K ohm
resistor to pin 35 (+5V). The other end should be connected to both pins 26 (B8) and
29 (E3). Pin 26 is an programmable output pin, and pin 29 is an external input.
spec sets the state of pin 26 at the beginning of each move (which may involve all the

234 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

motors on the board) and clears the state of the pin at the end of the move. The sta-
tus of pin 29 is read to determine when all activity, including backlash, is completed.
The connection to pin 35 (+5V) is necessary to pull up the output.

Output pins 24 or 25 on the general purpose I/O connector can be used to gate a
counter during powder-mode scans. While the powder-mode motor is moving during
these scans, spec sets pin 24 high and pin 25 low. Use the one appropriate for your
particular counter. To gate the Ortec 994 counter/timer, for example, pin 24 and pin
36 (logic ground) are connected to the front panel enable BNC connector on the Ortec
module.

Kinetic Systems 3112 12-Bit DAC as Motor Controller (CAMAC)

config file:
CA_KS3112 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 KS3112 0 KS 3112 12-Bit D/A as Motor Control

Some spec users use this DAC to control piezo-electric motion devices. Commanding
such a device to move from spec results in an instantaneous change in the output
voltage of the DAC.

Micro-Controle IP28 (GPIB and Serial)

config file:
RS_IP28 = device_name baud_rate number_of_motors
GP_IP28 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 <> 9600 4 Micro-Controle IP28 (Serial)
YES 6 4 Micro-Controle IP28 (GPIB)

Code for this motor controller was developed by a spec user. If new users plan on
using this controller, please contact CSS first.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 235

MicroControle SIX19 (Serial)

config file:
RS_SIX19 = device_name baud_rate number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES 13 MicroControle SIX19

Missour i Univer sity Research Reactor Motor Controller (GPIB)

config file:
HW_MURR = number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES 13 Missouri Research Reactor Motors

edconf motor screen:
Number: <>Controller 0: MURR_E 1: MURR_E 2: MURR 3: MURR
Unit/Channel 0/1 0/2 0/3 0/4
Name Two Theta Theta Chi Phi
Mnemonic tth th chi phi

The University of Missouri Research Reactor uses custom motor controllers. Each
channel of the motor controller requires one GPIB address. The GPIB address is set
using the channel number in the required unit/channel configuration on the motor
screen of the configuration editor. The unit number is not relevant for these motors.

The controller type MURR_E or MURR is selected depending on whether or not the con-
troller channel uses an encoder.

There are several unique parameters associated with each motor channel. The
parameters assume default values when the controllers are powered up. Alternate
values can be set in the config file that will be programmed by spec. The values are

Name Parameter Name Power-On Value
Modulo Generic Parameter 1 360000
Grain Generic Parameter 2 5

Direction Generic Parameter 3 1
Drive Mode Generic Parameter 4 1
Cut Point Generic Parameter 5 0

For the modulo parameter, the value 360000 is appropriate for rotation stages. For

236 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

translation stages, the maximum value (999999?) would be appropriate. The grain
parameter is a multiplier for the steps sent to the motor by spec and should be sim-
ply related to a gear reducer value. The direction parameter should be set to zero to
reverse the direction of the motor so that its position agrees with the controller dis-
play. The drive-mode parameter changes the meaning of the output signals. For a
value of one, the output signals are count-up/count-down. For a value of zero, the
output signals are step/direction.

The cut-point parameter allows negative positions to be reported by spec, even
though the controller only reports positive positions. Positions reported by spec will
be between the cut point and the cut point plus the modulo parameter multiplied by
the step size parameter. F�� � � � ��� �
� � ��� �� � � � � � �� � � � � ���
� �� �� �� � ��� ��� � � �
� � � � � � � � �� � �
� ��
�
 � � � �� � � �� �� � � � � � �� � � � � � � ���� �� ���������

� � �

New Focus Model 8732 Picomotor Controller (GPIB and Serial)

config file:
RS_NF8732 = device_name baud_rate number_of_motors
GP_NF8732 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 9600 4 New Focus Picomotor 8732 (Serial)
YES 6 4 New Focus Picomotor 8732 (GPIB)

Each New Focus Picomotor controller unit has five card slots available. Each card
has four connectors, and each connector can control up to three channels. The slot,
connector and channel numbers need to be encoded in the configuration file by enter-
ing unit/channel information with the configuration editor. The unit number selects
which Picomotor controller. The channel number selects the slot/connector/channel
number of the controller encoded as XYZ, where the slot number is 1 <= X <= 5, the
connector is 1 <= Y <= 4 and the channel is 1 <= Z <= 3.

The only parameter from the config file used to program these controllers is the
steady-state rate, which is sent to the controller as the pulse frequency.

The New Focus Picomotors are unlike most motor controllers in that there is no way
to read the motor positions, and no way to know how far the motors move when com-
manded. spec attempts to guess how far the motor has moved if the positions are
read while the motor is active, or if the move was aborted or stopped, based on the
elapsed time of the move and the pulse frequency programmed into the controller.
However, the positions reported by spec for the New Focus controllers should not be
taken too seriously.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 237

The motor controller can only move 65,535 steps at a time. For larger moves, spec
will automatically send 65,535 steps at a time until the complete move is performed.

Only the up-to-three motors on the same connector can be moved simultaneously.
spec prints an error message if you to try to move a motor on a one connector while
motors on another connector are active. (The moves could be automatically queued
in software if users think such additional code development is warranted.)

Note also, the commands chg_dial(mne, "lim+") and chg_dial(mne, "lim−") can
be used to start continuous moves, which can be stopped either with ˆC or the stop()
function. Please beware also, there is no limit switch capability with this controller,
so moves must be stopped by user intervention.

Command pass through is available using the following functions.

motor_par(motor, "send", cmd) — Sends the string cmd to the New Focus channel
associated with motor .

motor_par(motor, "read", cmd) — Sends the string cmd to the New Focus channel
associated with motor , as above, and returns a string containing the response.

The following special commands are also available:

motor_par(motor, "always_address", mode) — By default, spec currently prefixes
each command sent to the controller with an eleven-character channel-select
instruction. Communication can be made more efficient by turning off the
"always_address" feature by calling this function with mode set to 0. With
the mode off, the channel-select instruction is only sent when needed. The rea-
son for always sending the channel-select information is to avoid spec losing
track of the current channel in the event a user manually switches the con-
troller to local mode.

motor_par(motor, "was_local") — This command will force spec to issue a channel-
select instruction for the next command, allowing recovery after manually
switching the controller to local mode when the "always_address" mode is off.

Newpor t (Klinger) Motion Master 2000/3000 (GPIB, Serial and PC Board)

config file:
RS_MM2000 = device_name baud_rate number_of_motors
RS2_MM2000 = device_name baud_rate number_of_motors
GP_MM2000 = gpib_address number_of_motors
PC_MM2000 = base_address number_of_motors

edconf devices screen:

238 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 9600 4 Newport MM2000/3000 (Serial)
YES /dev/tty00 9600 4 Newport MM2000/3000 (Daisy Chain)
YES 6 4 Newport MM2000/3000 (GPIB)
YES 0x280 4 Newport MM2000 (AT bus)

Optional parameters:
MOTPAR:dc_proportional_gain
MOTPAR:dc_derivative_gain
MOTPAR:dc_integral_gain
MOTPAR:dc_integration_limit
MOTPAR:dc_sampling_interval
MOTPAR:dc_following_error
MOTPAR:home_base_rate
MOTPAR:home_slew_rate
MOTPAR:home_acceleration
MOTPAR:slop

The Newport (formerly Klinger) MM2000 and MM3000 motor controllers are sup-
ported by spec on both RS-232C and GPIB interfaces. The MM2000 is also sup-
ported on the ISA bus interface. On the serial interface, spec supports the daisy
chaining available on the MM2000 and MM3000 controllers. All these controllers
can be used both with DC motors (with encoders) and with the 1.5M-type stepper
motors.

Newpor t Motion Master 4000/4005 (GPIB and Serial)

config file:
RS_MM4000 = device_name baud_rate number_of_motors
GP_MM4000 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 9600 4 Newport MM4000/4005 (Serial)
YES 6 4 Newport MM4000/4005 (GPIB)

Optional parameters:
MOTPAR:dc_gain
MOTPAR:dc_damping_constant
MOTPAR:dc_integration_constant
MOTPAR:dc_following_error
MOTPAR:home_slew_rate
MOTPAR:home_acceleration
MOTPAR:slop

Before using the MM4000/4005 with spec, you need to set the communication
parameters using the front panel buttons and display. The default communication

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 239

timeout of 0.5 seconds should be fine. Choose CR as the communication terminator
for both GPIB and RS-232C interfaces. The SRQ feature of the GPIB interface is not
used by spec, so the IEEE SRQ setting must be set to NO . For the RS-232C interface,
the factory defaults for a parity setting of none, a word length of 8 bits and a stop-bits
setting of 1 bit should be appropriate.

NSLS Brand MMC32 Controller (GPIB)

config file:
GP_MMC32 = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES 5 32 NSLS Brand MMC32 Controller (GPIB)

Oregon Micro Systems (PC Board and VME)

config file:
PC_OMS = device_name number_of_motors INTR|POLL
PC_OMSP = base_address number_of_motors POLL
PC_OMSP58 = base_address memory_address number_of_motors POLL
PC_OMSV = VME_address number_of_motors IRQ_number|POLL
PC_OMSV58 = VME_address number_of_motors IRQ_number|POLL

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/oms00 INTR 4 Oregon Micro Systems PCX/38/39
YES 0x330 POLL 4 Oregon Micro Systems PCX/38/39 polled
YES 0xe000 0x300 POLL 4 Oregon Micro Systems PC58 polled
YES 0xfc00 IRQ5 8 Oregon Micro Systems VME8
YES 0xf000 POLL 8 Oregon Micro Systems VME58

spec currently supports PC board and VME module Oregon Micro Systems motor
controllers.

For the PC versions of spec, the PCX, PC38 or PC39 models may be used in two,
four, six or eight motor configurations. (Note, the newer PC34 and PC48 models
should be used with the PCX/38/39 configuration.) spec can operate with a CSS-sup-
plied driver (on certain platforms) or completely from user level using I/O port
polling. The driver does require a dedicated PC interrupt, and at present, is limited
to support of only one board. If I/O port polling is used, spec allows use of multiple
boards.

240 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

The driver is contained in the file oms.c in the drivers subdirectory of the spec distri-
bution. See the README file in the that directory for instructions on installing the
driver into the UNIX kernel.

There is no driver for the PC58 board. It is only supported in polled mode.

For VME, the VME8, VME44 and VME58 models are supported. The VME8 oper-
ates eight motors, while the VME44 operates four motors with encoders, although
software options for encoders are not currently implemented in spec. Multiple OMS
VME motor controllers can be used simultaneously and are generally operated in
polled mode. Interrupt-driven mode is currently only supported with the National
Instruments MXI-VXI controllers.

OMS motor controllers can have from two to eight motors. spec numbers the motors
the OMS manuals designate X , Y , Z , T , U , V , R and S as 0 through 7, in that order.

The first example above selects the PC board with the driver node /dev/oms00. The
driver may be used in either interrupt or polled mode. Interrupt mode means the
spec program will be interrupted when motors complete their motions or hit a limit.
In polled mode, the wait() function must be called repeatedly to check the status of
the motor. Interrupt mode generally gives better performance, although in earlier
versions of spec, software problems could be overcome by using polled mode. A PC
interrupt is always required when the driver is used, even when polled mode is
selected.

The second example selects the PC board with I/O port polling, with the board’s base
address at 0x330 , and with four motors on the board.

The third example selects the PC58 board at I/O port 0x300 . The PC58 also require
4,096 bytes of low memory. The example configuration with the address entered as
0xE000 in the DEVICE column selects a real memory address of 0xE0000 , as the
value in the configuration is multiplied by 16.

The fourth example selects the VME8 and VME44 modules, with the board’s A16
base address jumpered at 0xFC00 and with the VME interrupt request jumpered for
IRQ5 . Any of the VME IRQ vectors may be selected as can be polled mode. If more
than one VME OMS controller is being used, all must be in polled mode or all must
use interrupts. Different boards may use the same interrupt, though.

The last example selects the VME58 model. Note, this model requires 4096 bytes of
A16 address space, so valid addresses have one hexadecimal digit followed by three
zeroes.

On the motor screen (M) of the configuration editor, all of the OMS controllers use the
symbol OMS or OMS_E in the controller field of the screen. The latter indicates the
motor is being used with an encoder.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 241

Special Commands

The following special commands are available through the motor_par() function.
The two letter commands are direct implementations of commands described in the
OMS manual. Refer to that manual for more information. Not all commands are
available on all versions of the OMS controllers or on all firmware versions for a par-
ticular controller.

motor_par(motor, "PA", mode) — If mode is 1, the controller turns motor power on
before each move and off after the move (assuming motor power is controlled
by the auxiliary output pins). If mode is 0, motor power stays on.

motor_par(motor, "SE", msec) — Sets the settling time in milliseconds to be used
before the power is reduced in PA mode.

motor_par(motor, "AF") — Turns auxiliary power off.

motor_par(motor, "AN") — Turns auxiliary power on.

motor_par(motor, "BH", mask) — Sets general purpose output pins high, according to
which of bits 0-13 in mask are set.

motor_par(motor, "BL", mask) — Sets general purpose output pins low, according to
which of bits 0-13 in mask are set.

motor_par(motor, "BX") — Returns the state of the general purpose input pins. A
one in any binary position in the value returned indicates that the correspond-
ing pin is low.

motor_par(motor, "RB") — Returns the direction of the general purpose I/O lines.
Output bits return a one, while input bits return a zero.

Command Pass Through

Command pass through is available using the following functions. Command pass
through should be used with caution to avoid interfering with the built-in program-
ming commands spec sends to the OMS controllers.

motor_par(motor, "send", cmd) — Sends the string cmd to the OMS channel associ-
ated with motor . For example, set cmd to "LF" to disable hardware limits on
the associated motor.

motor_par(motor, "read", cmd) — Sends the string cmd to the OMS channel associ-
ated with motor , as above, and returns a string containing the response. For
example,

242 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

30.FOURC> print motor_par(tth, "read", "RP")
240000

31.FOURC>

results in the string "AX RP\n" being sent to the controller.

Asynchronous Surface Scanning

The following commands implement a special asynchronous, two-dimensional scan-
ning mode available with newer versions of the OMS firmware. The scan is in the
form of a repeating square wave, as illustrated below.

----- ----- -----
| | | | | |
d| | | | | |
y| | | | | |
| | | | | |
o ----- ----- ---> dx

The scan starts at the point o , as specified with the commands below, and continues
in the x and y directions in the range as specified with the commands below. At the
end of the range, the motors are returned to the starting position and the scan is
repeated.

Two motors must be configured with the mnemonics dx and dy in order for the asyn-
chronous scanning mode to be available. When not in scanning mode, these motors
may be moved normally.

Once started, the scanning will continue until explicitly stopped either with the
stop_scan command (shown below), with a ˆC typed at the keyboard or with a sync
command (which aborts the motors, but doesn’t update spec’s positions). While scan-
ning, the wait() function will not indicate these motors are moving. The getangles
command will, however, return the current positions of these motors.

When the dx and dy motors are scanning, the remaining motors may be moved inde-
pendently.

motor_par(motor, "x_start", value) — Sets the starting position for the dx motor.

motor_par(motor, "x_range", value) — Sets the extent of the motion in the x direc-
tion.

motor_par(motor, "x_stepsize", value) — Sets the size of each step in x. The num-
ber of steps is determined by dividing this number into the range for x.

motor_par(motor, "y_start", value) — Sets the starting position for the dy motor.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 243

motor_par(motor, "y_range", value) — Sets the extent of the motion in the y direc-
tion.

motor_par(motor, "start_scan") — Starts the asynchronous scan.

motor_par(motor, "stop_scan") — Stops the asynchronous scan.

Or iel Encoder Mike Controller 18011 (Serial)

config file:
RS_18011 = device_name baud_rate number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/ttyh3 <> 4800 3 Oriel Encoder Mike Controller 18011

Or iel Encoder Mike Controller 18092 (Serial)

config file:
RS_18092 = device_name baud_rate number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/ttyh3 <> 4800 3 Oriel Encoder Mike Controller 18092

Phytron IXEα-C (GPIB and Serial)

config file:
RS_IXE = device_name baud_rate number_of_motors
GP_IXE = gpib_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 9600 2 Phytron IXE (Serial)
YES 6 4 Phytron IXE (GPIB)

Finding Reference Positions

The Phytron’s axis initialization command "0" , which searches for the negative limit
switch as described in the Phytron manual, is sent to a specific motor when the
chg_dial() function is invoked with either the "home+" or "home-" arguments. The

244 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

free-axis-displacement commands "L+" and "L-" are sent with the "lim+" and
"lim-" arguments, respectively.

There is no fixed hardware signal for a home switch on the Phytron controller, but
there are twelve digital inputs available on the input connector. There is also a com-
mand which will perform a relative move at the base rate until one of the inputs goes
high or low or the magnitude of the move is reached. There are four parameters in
this command: the direction of the move, the magnitude of the move, the binary
input number and the sense of the input switch. All four parameters are set by
entering a string as generic parameter 1 on the optional motor parameter screen of
the configuration editor. (Get there by typing m twice from the standard motor
parameter screen.) The string you enter will be sent to the motor when the "home"
argument is used with the "chg_dial()" function. The string is the actual command
sent to the Phytron, and is of the form

SmagvEnn D

where S is a + or a − for the sign of the move, mag is the magnitude of the move (maxi-
mum of 65535 steps), nn is the input number (01 through 12) and D is the sense of the
input where 0 means the motor stops if the input goes off and 1 means the motor
stops if the input goes on. For example,

+200vE071

would command the motor to move no more than 200 steps in the plus direction, or
until input 7 goes ON.

Use the m command twice from the motor screen of the configuration editor to reach
the screen where you can enter generic parameter 1. Type an initial single quote to
enter a string.

Special Commands

On faster computers, the Phytron apparently cannot keep up with commands sent by
the computer at full speed. You can slow down the communication between spec and
the Phytron controllers with the following commands:

motor_par(motor, "rdelay" [, value]) — If value is given, sets the delay before
reading a response from the Phytron to value seconds, otherwise returns the
current value. The default value is 0.015.

motor_par(motor, "wdelay" [, value]) — If value is given, sets the delay before
sending a command to the Phytron to value seconds, otherwise returns the
current value. The default value is 0.015.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 245

Only one copy of the rdelay and wdelay parameters is kept for all the Phytron con-
trollers. The motor mnemonic motor can be associated with any of the Phytron con-
trollers. The values for the parameters are saved in the state file, so should only
need to be reset after starting fresh. (See page 51 in the Reference Manual.)

Command pass through is available using the following functions.

motor_par(motor, "send", cmd) — Sends the string cmd to the Phytron channel asso-
ciated with motor .

motor_par(motor, "read", cmd) — Sends the string cmd to the Phytron channel asso-
ciated with motor , as above, and returns a string containing the response.

motor_par(motor, "usend", cmd) — Sends the string cmd to the Phytron controller
associated with motor .

motor_par(motor, "uread", cmd) — Sends the string cmd to the Phytron controller
associated with motor , as above, and returns a string containing the response.

For example,
31.FOURC> print motor_par(tth, "read", "P20R")
240000

32.FOURC>

results in the string "\002XP20R\003\r\n" being sent to the controller. Command
pass through should be used with caution to avoid interfering with the built-in pro-
gramming commands spec sends to the Phytron controllers.

The following command is also available to help with debugging:

motor_par(motor, "dump") — Displays the values of Phytron parameters P01
through P10 and P12 through P17 for the channel associated with motor .

PC DAC as Motor Controller

config file:
PC_DAC_B12 = base_address number_of_motors
PC_DAC_T12 = base_address number_of_motors
PC_DAC_B16 = base_address number_of_motors
PC_DAC_T16 = base_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES 0x300 1 PC DAC 12-Bit D/A (binary output)
YES 0x310 1 PC DAC 12-Bit D/A (two’s complement)
YES 0x320 1 PC DAC 16-Bit D/A (binary output)
YES 0x330 1 PC DAC 16-Bit D/A (two’s complement)

246 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

PMC Corporation DCX-100 (Serial and PC Board)

config file:
RS_DCX = device_name baud_rate number_of_motors
PC_DCX = base_address number_of_motors

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty00 9600 4 PMC Corp DCX-100 (Serial)
YES 0xD000 4 PMC Corp DCX-100 (PC Board)

Optional parameters:
MOTPAR:dc_proportional_gain
MOTPAR:dc_derivative_gain
MOTPAR:dc_integral_gain
MOTPAR:dc_integration_limit
MOTPAR:dc_sampling_interval
MOTPAR:dc_following_error
MOTPAR:slop

XIA HSC (Huber Slit Controller)

config file:
RS_XIAHSC = device_name baud_rate number_of_slits

edconf devices screen:
MOTORS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/ttyS0 <> 9600 2 XIA HSC-1 (Serial)

sample edconf motor screen:
Number: <>Controller 0: XIAHSC 1: XIAHSC 2: XIAHSC 3: XIAHSC
Unit/Channel 0/0 0/1 0/2 0/3
Name Slit1 A Slit1 B Slit1 Gap Slit1 Cen
Mnemonic s1a s1b s1g s1c
Steps per degree/mm 400 400 400 400

The X-Ray Instrumentation Associates Huber Slit Controller Model HSC-1 is a spe-
cialized device only used to control Huber slits. The HSC-1 communicates through a
serial port, and several HSC-1 modules can be daisy-chained together and run off a
single serial port. On the device screen of the configuration editor, the NUM field is set
to the number of HSC-1 modules on the serial port.

The HSC-1 module needs to be sent a calibration command before the HSC-1 motors
can be moved with the normal move commands. The HSC-1 manual describes a
manual calibration procedure. It is also possible to set the controller to the cali-
brated state by sending the "calibrate" command with motor_par() as described

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 247

below.

Each HSC-1 contains two motors that control the slit blades. Each blade can be
moved independently. The HSC-1 also implements commands to move both blades
simultaneously to change either the gap or the center-of-the-gap position. spec can
be configured to control just the two blades, just the gap and the center position, or
all four motions. When all four motions are configured, moving either blade changes
the positions reported for gap and center, and moving either the gap or the center
causes the positions reported for each blade to change.

Configuration for the HSC-1 requires the unit/channel field on the second line of the
motor screen of the configuration editor to be filled in according to the following spe-
cial format. The unit number corresponds to successive entries on the devices screen
� � ach unit is associated with a different serial port. The channel number combines
two values. Each HSC-1 module requires an arbitrary module number N (see below).
This number is multiplied by 10 and added to the channel number that identifies the
motion, as follows: For motor controller N, channel N×10 + 0 corresponds to blade A,
channel N×10 + 1 corresponds to blade B, channel N×10 + 2 corresponds to the gap
and channel N×10 + 3 corresponds to the center of the gap. Channel numbers ending
in 4 through 9 are invalid.

Entering the Serial Number

The module number N (see above) is used only for internal bookkeeping and does not
designate a particular HSC-1 module. Each module is identified by a thirteen-char-
acter unique serial number of the form XIAHSC-B-0014 . The serial number needs to
be entered as a string in the field generic parameter 1 on the optional motor parame-
ter screen of the configuration editor. Use the m command twice from the motor
screen of the configuration editor to reach the screen where you can enter generic
parameter 1. Type an initial single quote to enter a string. Note, the serial number
can also be entered as B-0014 , 0014 or 14 if such a string is sufficient to distinguish
among modules. Also note, the serial number should be entered for just one of the
motors associated with module N.

If the alias feature of the HSC-1 is used, and bit 6 of the control word (see below) is
set for “use alias as ID”, spec requires there be no space characters in the alias. Of
course, the alias, rather than the serial numbers would need to be entered as generic
parameter 1. Setting and changing aliases requires establishing serial communica-
tion with the modules, which may be difficult for novice spec administrators, so CSS
recommends simply using the serial numbers as the modules come from the factory.

248 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Motor Parameters

The steps per deg/mm parameter should be set to 400 for the HSC-1 modules.

Normally, the positions for each blade become more positive as the blade is opened.
However, if the sign of user * dial parameter is negative for either blade (or both), the
motor position will become more negative as the blade opens. The sense of the
center-of-the-gap motion can also be changed by changing the sign of the sign of user
* dial parameter. The gap motion is always positive as the gap increases, though.

The backlash, speed and acceleration parameters in the config file are ignored.

CSS recommends using the calibration feature of the HSC modules to set the zero
positions, rather than using the set macro to set the user offset parameter. That is,
it is best to keep the user and dial positions the same. The chg_dial() function will,
in fact, send the “immediate calibration” command to the controller, but only when
setting the position to zero. Note, the gap should be physically at zero before using
set_dial . Use of the standard set_dial macro should be followed by the set macro
to set the user-dial offset back to zero.

The HSC-1 controller stores a number of parameters in nonvolatile memory. spec
will read and display them with the command motor_par(motor, "dump") , where
motor is the mnemonic for any of the motions on the particular HSC-1 module. The
display format is as follows:

1 Outer motion limit (rw) = 4400 (11 mm)
2 Origin position (rw) = 400 (1 mm)
3 Motor A position (ro) = 900 (2.25 mm)
4 Motor B position (ro) = 900 (2.25 mm)
5 Motor step delay (rw) = 200 (roughly 0.272 mm/sec)
6 Gear backlash (rw) = 10 (0.25 mm)
7 Control word (rw) = 142 (0x8e)
8 Escape character (rw) = 33
9 Arbitration priority (rw) = 8
10 Motor A phase (ro) = 0
11 Motor B phase (ro) = 0
12 Calibration complete (ro) = 150
13 EEPROM signature (ro) = 23205
14 EEPROM version (ro) = 4

These parameters can be modified using a command such as
motor_par(motor, "send", "W 6 20")

which changes memory location 6 (gear backlash) to 20.

Special Commands

The motor_par() options implemented for the HSC-1 are as follows:

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 249

motor_par(motor, "calibrate") — Sends the “immediate calibration” command to
the unit. The effect is to set the current position of each blade in the controller
to the origin parameter. It also sets spec’s positions for the gap, center and
blades to zero. Thus the gap should physically be at zero before sending this
command.

motor_par(motor, "origin", value) — Sets the controller’s origin parameter
(parameter 2 of the controller’s memory map) to value . The units of value are
steps, where 400 steps corresponds to 1 mm. The origin parameter determines
how far beyond the zero position each slit blade can be moved. Note, changing
the origin parameter will change the setting of the current position of the
blades. The blades should thus be both at zero before sending the "origin"
command, and a "calibrate" command should be sent immediately after-
wards. The factory default value for origin is 400.

motor_par(motor, "range" [, value]) — Sets the controller’s “outer limit” parame-
ter (parameter 1 of the controller’s memory map) to value , where the units of
value are steps. This parameter controls how far each blade can be moved.
The factory default value for this parameter is 4400.

motor_par(motor, "step+") or motor_par(motor, "step-") — Moves blade A or blade
B one step in the specified direction. This command can be used to position the
slits whether or not they have been calibrated.

motor_par(motor, "send", cmd) — Sends the string cmd to the HSC-1 unit associated
with motor . The module serial number will be included automatically.

motor_par(motor, "read", cmd) — Sends the string cmd to the HSC-1 unit associated
with motor , as above, and returns a string containing the response.

motor_par(motor, "usend", cmd) — Sends the string cmd to the serial port connected
to the HSC-1 unit associated with motor . The cmd must include the full
HSC-1 command syntax.

motor_par(motor, "uread", cmd) — Sends the string cmd to the serial port connected
to the HSC-1 unit associated with motor , as above, and returns a string con-
taining the response.

250 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Timer s and Counters
Am9513-based Counter/Timer PC Boards

config file:
PC_AM9513 = base_address number_of_counters

edconf devices screen:
SCALERS DEVICE ADDR <>MODE NUM <>TYPE

YES 0x340 3 Am9513 Counter/Timer PC Boards

edconf scalers screen:
NUMBER NAME MNEMONIC <>DEVICE UNIT CHAN <>USE AS SCALE FACTOR

0 Seconds sec AM9513 0 0 timebase 1000
1 Monitor mon AM9513 0 1 monitor 1
2 Detector det AM9513 0 2 counter 1

The ComputerBoards CIO-CTR05/10/20 cards, the Keithley-Metrabyte Model
CTM-05/10 cards, the Scientific Solutions Labmaster series cards, and similar models
from other manufactures all use the Advanced Micro Devices Am9513 System Timing
Controller chip. The chip contains five 16-bit counters that can be programmed in a
wide range of configurations. spec’s programming uses two of the counters for a
32-bit detector counter, two for a 32-bit monitor counter and one for a 16-bit elapsed
time counter. On boards with two or four chips, the additional chips are each pro-
grammed for two more 32-bit detector counters. You can program the chip through
spec to count to either a time preset using the tcount() function or a monitor-count
preset using mcount() .

You must connect the detector to the input connector pin labeled source 3. Counts
received from the monitor go to the pin labeled source 5. In addition, you must wire
the connector pin labeled output 1 to the pins gate 2, gate 4 and gate 5. (In the new
Keithley-Metrabyte CTM-05A manual, the source pins are now labeled ACLKIN, the
output pins are now labeled ATIMEROUT, and the gate pins are now labeled
AGATE.)

If it is a two- or four-chip board, the additional detectors are connected to the source 3
and source 5 pins of the chips. In addition, the output 1 from the first chip must be
also connected to gate 2 and gate 4 of the additional chips.

The counter boards are accessed from user level and are polled to determine when
count intervals have elapsed. Thus, interrupts should be disabled on the boards.

You will need to enter the base address of the counter chip in the config file. Note
that for the Labmaster board, the base address of the counter chip is eight plus the
base address of the board itself.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 251

When counting to time, the resolution of the clock depends on the length of the count
interval. The maximum count time is 71.5 minutes. The time base resolution (in sec-
onds) is set according to the following table:

0.00001 for t < 0.6 sec
0.0001 for t < 6 sec
0.001 for t < 60 sec
0.01 for t < 655.35 sec (10.9 min)
0.0655 for t < 71.5 min

When counting to monitor counts, the 0.01 second time base is used, and the value
returned for the time channel will be corrected to account for the rollovers that occur
every 655.36 seconds.

Bi Ra 5302 64-Channel ADC (CAMAC)

config file:
CA_BR5302 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 BR5302 0 BiRa 5302 ADC as counters

scalers screen:
NUMBER NAME MNEMONIC <>DEVICE UNIT CHAN <>USE AS SCALE FACTOR

0 Sensor 1 sen1 BR5302 0 0 counter 2

Up to 64 counters may be configured per ADC module. Each channel is 12-bits. Cur-
rently spec assumes a ±10 Volt range on each channel and scales the readings to that
range. The scale factor from the config file is used to program the gain on the corre-
sponding channel. The values returned by getcounts in the S[] array are scaled by
the gain value. Allowed values for the gain are from 1 to 1024 in powers of two. If an
illegal value is entered, spec uses the next lower legal value.

252 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

DSP RTC-018 Real Time Clock (CAMAC)

config file:
CA_RTC018 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 RTC018 DSP RTC-018 Real Time Clock

The Standard Engineering DSP RTC018 Real-Time Clock is wired as follows:

(1) If counting to time, the crystal oscillator output (218Hz) is connected to input
A. If counting to the monitor, the monitor cable from one of the scaler inputs
(usually channel 1) is connected to input A.

(2) The preset out output is connected to start.

(3) If using the DSP QS-450 scaler, connect the busy output to the gate input on
the scaler module. If using the Kinetic Systems 3610 hex scaler, connect the
end output to the inhibit input of the scaler module.

(4) A 1 KHz signal should be fed into a scaler input (normally channel 0).

(5) The detector signal should be fed into a third scaler input (normally channel
2).

DSP QS-450 4-Channel Counter (CAMAC)

config file:
CA_QS450 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 QS450 0 DSP QS-450 4-Channel Counter

DSP TS-201 Dual Timer/Scaler (CAMAC)

config file:
CA_TS201 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 TS201 DSP TS-201 Dual Timer/Scaler

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 253

Inel 715 Dual Scaler

config file:
RS_INEL = device_name baud_rate number_of_counters

Inel XRGCI as Timer/Counter

config file:
RS_XRGCI_T = device_name baud_rate number_of_counters

Joerger VSC16/8 Timer/Counter (VME)

config file:
PC_VSC16T = base_address number_of_counters INTR|POLL

edconf devices screen:
SCALERS DEVICE ADDR <>MODE NUM <>TYPE

YES 0x1000 POLL 8 Joerger VSC16/8 as Timer/Counter
YES 0x1100 POLL 8 Joerger VSC16/8 as Counters

Note, you need to add two zeros to the value of the settings of the six hexadecimal
digits on the module’s address switches to form the A32 address entered in spec’s
configuration editor.

Note also, the ARM IN connector needs to be jumpered to the ARM OUT on the
Joerger front panel. If more than one Joerger module is used, the one module desig-
nated as Timer/Counter is the master, and the ARM OUT from that module needs to
be connected to the ARM IN of all the modules.

CSS recommends users order the Joerger scaler with a 1 MHz crystal oscillator
rather than the 10 MHz oscillator normally provided. The 10 MHz oscillator only
allows preset counting times of a bit more than seven minutes before the counter
overflows. The oscillator can also easily be changed in the field. Its only purpose is
to provide the front panel time-base output. In either case, a value corresponding to
the oscillator rate must be entered into the configuration editor on the scalers screen
for the scale factor for the channel corresponding to seconds.

254 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Kinetic Systems 3610 6-Channel 50 MHz Counter (CAMAC)

config file:
CA_KS3610 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 KS3610 0 KS 3610 6-Channel 50 MHz Counter

Kinetic Systems 3640 Used as Counter or Timer (CAMAC)

config file:
CA_KS3640T = slot_number
CA_KS3640C = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 KS3640T KS 3640 Counter used as Timer
2 KS3640C 0 KS 3640 Counter used as Counter

In order to use a 3640 as a timer to gate other 3640 modules, you need to make modi-
fications. The modifications will leave one of the front panel inhibit inputs alone and
convert the other to an inhibit output. One way to do this is to add an LM311 com-
parator IC to the circuit. The negative input (pin 2) of the 311 is connected to the
LAM signal from pin 9 of IC 30 of the 3640 module. The positive input (pin 3) is held
high at about 3.2V through a 1200 ohm over 2200 ohm voltage divider between +5V
and ground. Pins 1 and 4 of the 311 are connected to ground. Pin 8 is connected to
+5V. The output of the 311 (pin ?) is connected to the front panel LIMO connector,
which must have the factory connection cut. In addition, a 2K Ohm resistor is con-
nected between the output and +5V to pull up the output.

In operation, the inhibit inputs of all the 3640s are connected to the inhibit outputs of
all the 3640s. Thus any module can be used as the gate. One module should be fed a
fixed time base, say 1KHz or 10KHz which must come from some external source.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 255

Kinetic Systems 3655 Timing Generator (CAMAC)

config file:
CA_KS3655 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 KS3655 KS 3655 8-Channel Timing Generator

Current users of spec have made the following modifications to the Kinetic Systems
Model 3655 Timing Generators. This timing generator is customarily used with the
Kinetic Systems Model 3610 Hex Scaler. All modifications are made on the compo-
nent side of the board.

(1) Bring the internal 1 KHz timing signal out through the channel 7 front-panel
lemo connector. Do this by first unsoldering the end of the wire that connects
the center pin of the channel 7 lemo connector from the feed through on the
circuit board. Do not unsolder the wire from the connector, as it will be diffi-
cult to solder on a new wire. Instead splice a longer wire to the one already
attached to the connector and solder the other end of that wire to pin 11 of
chip BJ. (Pin 11 is the center pin on the front-panel side of the chip.)

(2) Disconnect the internal inhibit signal from the CAMAC dataway, and bring it
out through the channel 8 lemo connector. Do this by folding up and/or snip-
ping pin 6 of the socketed 7407 chip in position BX, near the front panel.
Next either fold up pin 3 of chip AU or cut the long trace that leads from that
pin to the dataway Inhibit connector. Then solder a wire from pin 3 of chip
AU to the bottom lead of resistor R45. The resistor is located near the top-
right corner of the circuit board, and the bottom lead is the one nearest the
letters R45.

Channel 7 is then connected to channel 0 of the scaler module, while Channel 8 is
connected to the inhibit input. The signal from the source of monitor counts is con-
nected, using a tee, to the clock input of the 3655 and the monitor scaler channel
(usually channel 1; the detector is usually channel 2).

256 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Or tec 974/994/995/997 NIM Timer s and Counters

config file:
RS_OR9XT = device_name baud_rate number_of_counters
GP_OR9XT = gpib_address number_of_counters
RS_OR9XC = device_name baud_rate number_of_counters
GP_OR9XC = gpib_address number_of_counters
RS_OR9XB = device_name baud_rate number_of_counters
GP_OR9XB = gpib_address number_of_counters

edconf devices screen:
SCALERS DEVICE ADDR <>MODE NUM <>TYPE

YES /dev/tty1 9600 4 Ortec 974/994 Counter/Timer (Serial)
YES 3 4 Ortec 974/994 Counter/Timer (GPIB)
YES /dev/tty2 9600 2 Ortec 974/994/995/997 Counter (Serial)
YES 3 2 Ortec 974/994/995/997 Counter (GPIB)
YES /dev/tty3 9600 3 Ortec 994 Blind Timer/Counter (Serial)
YES 3 3 Ortec 994 Blind Timer/Counter (GPIB)

edconf scalers screen:
NUMBER NAME MNEMONIC <>DEVICE UNIT CHAN <>USE AS SCALE FACTOR

0 Seconds sec OR9XX 0 0 timebase 1000
1 Monitor mon OR9XX 0 1 monitor 1
2 Detector det OR9XX 0 2 counter 1

spec supports the Ortec 974, 994, 995 and 997 counter and counter-timer NIM mod-
ules over both GPIB and RS-232 interfaces. When running the configuration editor,
select from the above descriptions on the device configuration screen to specify which
Ortec modules you are using and how you are using them.

Only one module can be selected as a counter/timer. The 974 module can be assigned
a maximum of four channels. The 994 should be assigned two channels normally and
three channels when used as a blind timer. The 995 has two channels and the 997
has one.

On the scaler configuration screen, choose OR9XX as the controller for all channels
associated with an Ortec module. The unit numbers selected for each channel corre-
spond to the order the Ortec modules appear on the device configuration screen.
When using the 994 as a blind timer, you must select channel number 2 for the time-
base.

Using the 974

The 974 is a four-channel counter/timer having a minimum 0.1 second time base.
You should connect the monitor counts through a tee to the EXT IN connector on the
back of module and to the COUNTER INPUT 2 connector on the front of the module.
Use the COUNTER INPUT 3 and 4 connectors for one or two detector input

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 257

channels. Also, make sure that the internal dip switch S-1 has position 6 set to one-
cycle.

Using the 994 as a Normal Timer

The 994 is a two-channel counter/timer with a minimum 0.01 second time base. In
order to obtain accurate elapsed time readings, one counter channel is used to count
time and the other is used to count monitor counts. An additional counter, such as
the 995 or 997 is normally used to accumulate detector counts and is gated by the
994. The monitor count source should be connected to both the IN A and IN B front
panel connectors of the 994 using a tee. The internal jumpers W3 and W4 must both
be set to the TIME position. Jumper W1 must be set to the NORMAL position. Also,
make sure the internal dip switch S-1 has position 6 set to one-cycle and position 7
set to COUNTER/TIMER. Finally, make sure the front panel DWELL switch is
turned all the way off.

Using the 994 as a Blind Timer

In the blind timer mode, the 994 has the monitor counts connected to IN A and detec-
tor counts connected to IN B. The internal jumpers W3 and W4 must both be set to
the COUNTS position. Jumper W1 must be set to the NORMAL position. Also,
make sure the internal dip switch S-1 has position 6 set to one-cycle and position 7
set to COUNTER/TIMER. Finally, make sure the front panel DWELL switch is
turned all the way off.

When operated as a blind timer, spec cannot read back the elapsed time from the
module. Instead, when counting to monitor counts, when counting in powder mode,
when reading the counters during updated counting and when counting is aborted
with a ˆC , the elapsed count time is estimated from the software clock.

Gating

An external enable signal from certain motor controllers may be be fed into the rear-
panel gate BNC input on the 974 or the front panel enable BNC input on the 994 for
precise counter gating in powder-mode scans.

If using a second Ortec module as a counter, you must connect the INTERVAL BNC
connector (rear panel on 974, front panel on 994) to the master GATE on the 974 rear
panel or to the ENABLE or individual GATE inputs on the 994, 995 or 997 modules.

258 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Setting Operational Parameters

The counter_par() function can be used to set various parameters associated with
the Ortec module code in spec. The first argument to counter_par() is a channel
number, although all the commands affect all channels of the associated module, or
all of the Ortec modules, if appropriate.

counter_par(counter, "alarm", mode) — If mode is zero, turns off the more efficient
ALARM mode of operation of the timer, and turns on a slower polled mode. If
mode is one, ALARM mode is turned on. The default operation is for ALARM
mode to be turned on, and there is generally no reason to turn it off.

counter_par(counter, "alarm") — Returns one if ALARM mode is on. Otherwise
returns zero.

counter_par(counter, "display", channel) — Sets the counter channel that will be
displayed on the associated module. For the 974 modules, valid values for
channel are 1 to 4. For the the 994 and 995 modules, valid values for channel
are 0 and 1.

counter_par(counter, "display") — Returns the channel number currently being
displayed.

counter_par(counter, "local", mode) — If mode is nonzero, will force the associated
module to go into local mode to allow front panel operation. In addition, the
module will be placed in local mode after each count interval. If mode is zero,
the module will be set to remote mode at the start of the next count interval,
and will not be set back to local mode after counting. When spec starts up,
not switching to local mode is the default behavior to minimize overhead.

counter_par(counter, "local") — Returns zero if the associated module is to be kept
in remote mode. Otherwise, returns one.

Software Timer

config file:
SW_SFTWARE = 1

If no hardware timer is available, the system clock can be used as a timer. Only
counting to time is allowed, as counting to monitor makes no sense. The nominal res-
olution depends on the underlying operating system, although 10 msec is typical.
The accuracy, though, is certainly less than that.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 259

Multichannel Data Acquisition Devices

DSP 2190 MCS Averager

config file:
CA_DSP2190 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 DSP2190 DSP 2190 MCS Averager

The DSP Technology 2190 Multichannel Scaling Averager consists of a pair of
CAMAC modules: the 2090S Multichannel Scaling module and the 4101 Averaging
Memory module. These two modules must occupy consecutive slots in the CAMAC
crate, with the 2090S in the lower-numbered slot. There is no entry for the 4101
module in the config file.

Functions

The mca_par() function controls the module’s behavior as follows:

mca_par("run") — programs the MCS for the number of bins and sweeps set with the
functions described below, then enables any other counters and starts the aver-
aging process. When the programmed number of sweeps is completed, the
MCS will generate a CAMAC LAM, which will cause the other counters to be
disabled. Use the wait() function to determine when the programmed num-
ber of sweeps are complete.

mca_par("halt") — halts the MCS and disables the other counters.

mca_par("bins") — returns the number of bins in each sweep. (Referred to in the
module documentation as “record length”).

mca_par("bins", value) — sets the number of bins in each sweep to value . The
number of bins can range from 8 to 32,767.

mca_par("sweeps") — returns the number of sweeps to be summed.

mca_par("sweeps", value) — sets the number of sweeps to be summed in the next
scan to value . The number of sweeps can range from 1 to 65,536.

mca_par("sweeps_comp") — returns the number of sweeps completed in the previous
scan. An error message is printed if this function is called while a scan is in
progress.

260 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

mca_par("first_ch") — returns the first channel to be read out using mca_get() .

mca_par("first_ch", value) — sets the first channel to be read out using mca_get()
to value .

mca_par("npts") — returns the number of channels to be read out using mca_get() .

mca_par("npts", value) — sets the number of channels to be read out using
mca_get() to value .

Note that the mca_get() function cannot be used while the MCS module is taking
data.

Note that the 4101 doesn’t actually average the sweeps, but only accumulates sums
in each channel. To obtain an average, you must divide the data in each channel by
the number of sweeps. The averaging scan will halt before the programmed number
of sweeps is completed if any of the channels overflow.

The module expects an external trigger and the external trigger is required to begin
each sweep.

LeCroy 2301 interface for qVT MCA

config file:
CA_LC2301 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 LC2301 LeCroy 2301 interface for qVT MCA

Functions

The mca_par() function controls the MCA module’s behavior as follows:

mca_par("clear") — clears the MCA. spec inserts a 1.5 second delay to give the
device time to clear.

mca_par("run") — starts the MCA.

mca_par("halt") — stops the MCA.

mca_par("first_ch") — returns the first channel to be read out.

mca_par("first_ch", value) — sets the first channel to be read out to value .

mca_par("npts") — returns the number of channels to be read out.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 261

mca_par("npts", value) — sets the number of channels to be read out to value . The
maximum number of channels is 1,024.

mca_par("delay") — returns the delay time in seconds that spec sleeps after the
MCA is cleared.

mca_par("delay", value) — sets the time for spec to delay after sending the clear
command. The hardware does require some delay. Some users have reported
1.5 seconds are needed, others report 0.1 seconds is adequate. The default
value is 0.1 seconds.

LeCroy 3512 Spectroscopy ADC

config file:
CA_LC3512 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 LC3512 LeCroy 2301 interface for qVT MCA

LeCroy 3588 Fast Histogram Memory

config file:
CA_LC3588 = slot_number

edconf CAMAC screen:
Slot Module Unit Description

1 LC3588 LeCroy 3588 Fast Histogram Memory

Keithley 2001 Multimeter (GPIB)

config file:
GP_K2001

262 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

Oxford/Tennelec/Nucleus PCA Mutlipor t, PCA II, PCA-3

config file:
GP_PCA_M = gpib_address
PC_PCA3 = base_address
PC_PCAII = device_name base_address INTR|POLL

edconf devices screen:
MCAs DEVICE ADDR <>MODE <>TYPE

YES 7 The Nucleus PCA Multport (GPIB)
YES 0x210 The Nucleus PCA-3 MCA Board
YES 0x1e0 POLL The Nucleus PCA II MCA Board
YES /dev/pca 0x1e0 INTR The Nucleus PCA II MCA Board

The PCA II MCA can be used in either a user-level I/O mode or in an interrupt-
driven mode with the CSS provided driver. The interrupt-driven mode allows dead-
time corrections and more accurate counting times. See the drivers/README file in
the spec distribution for information on installing the driver.

If using the interrupt-driven mode, note the following: Apparently, the PCA II doesn’t
trigger an interrupt on some PC mother boards. This problem can be fixed by chang-
ing the value of the resistor labeled R12 on the “PCA2 Memory Card” circuit dia-
gram. This resistor is located near the lower left corner of the main board when
viewed from the component side with the connector fingers pointing down and the
input BNC to the right. R12 is about a centimeter down and to the left of the U26 IC.
The circuit diagram indicates the resistor’s value is 2K, however the boards seem to
be shipped with a 1K resistor (brown-black-red stripes). Soldering a second 1K resis-
tor alongside R12 and in parallel electrically will lower the resistance to 0.5K, which
seems to work. (This modification was suggested by the manufacturer.)

Functions

The mca_par() function controls the board’s behavior as follows:

mca_par("clear") — clears the channels of the current group.

mca_par("run") — programs the board with the current parameters and starts acqui-
sition. Note that the tcount() and mcount() functions, as used in the various
counting macros will also start PCA II acquisition.

mca_par("halt") — stops acquisition. Note that the PCA II will also be halted when
the tcount() and mcount() functions, as used in the various counting macros,
complete their count intervals or are aborted.

mca_par("group_size") — returns the current group size.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 263

mca_par("group_size", size) — sets the group size to size . Legal values are 256,
512, 1024, 2048, 4096 and 8192. Values above 1024 may not be legal if insuffi-
cient memory is installed on the board.

mca_par("select_group") — returns the currently active group. Groups are num-
bered starting at zero.

mca_par("select_group", group) — set the active group to group . The number of
possible groups is given by the total number of channels on the board divided
by the group size. If the group passed to the function is greater than the maxi-
mum number of groups (based on the current group size and total number of
channels), the current group selected is group modulus the maximum number
of groups.

mca_par("pha") — selects pulse-height analysis mode on the board.

mca_par("gain") — returns the current gain value used in pulse-height analysis
mode.

mca_par("gain", value) — sets the pulse-height analysis gain to value . Legal val-
ues are 256, 512, 1024, 2048, 4096 and 8192.

mca_par("offset") — returns the current channel offset used in pulse-height analy-
sis mode.

mca_par("offset", value) — sets the pulse-height analysis offset to value . Legal
values are multiples of 256 from 0 to 7936.

mca_par("mcs") — selects multichannel scaling mode on the board.

mca_par("dwell") — returns the current multichannel scaling dwell time.

mca_par("dwell", value) — set the multichannel scaling dwell time. Allowed values
are numbers between 1e-6 and 60 seconds with mantissa of 1, 2, 4 or 8. A
value of -1 selects external dwell. If value isn’t an allowed value, it is rounded
to the nearest allowed value.

mca_par("mode") — returns two if the board is in PHA live-time mode, one if the
board is in PHA real-time mode and zero if the board is in MCS mode.

mca_par("readone", channel) — returns the contents of channel number channel .

mca_par("chan#") — returns the contents of channel number # . The channel number
is with respect to the current group.

mca_par("chan#", value) — sets channel # to value . The channel number is with
respect to the current group.

The following mca_par() functions are only valid when the board is used with the
interrupt-driven driver.

264 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

mca_par("preset") — in PHA mode, returns the current live-time or real-time preset
value in seconds.

mca_par("preset", value) — in PHA mode, sets the current live-time or real-time
preset value to value seconds.

mca_par("passes") — in MCS mode, returns the number of preset passes.

mca_par("passes", value) — in MCS mode, sets the number of passes to value .

mca_par("live") — in PHA mode, selects live-time counting.

mca_par("real") — in PHA mode, selects real-time counting.

mca_par("dead") — in PHA mode, returns the percent dead time, if accumulating in
live-time mode.

mca_par("elapsed_live") — in PHA live-time mode, returns the elapsed live time in
seconds.

mca_par("elapsed_real") — in PHA mode, returns the elapsed real time in seconds.

mca_par("elapsed_passes") — in MCS mode, returns the elapsed number of passes.

Silena CAT O MCA (Ser ial)

config file:
RS_CATO

Nicomp TC-100 Autocorrelator (Serial)

config file:
RS_TC100 = device_name baud_rate

The Nicomp TC-100 Autocorrelator is selected in the config file in the MCA section of
the devices screen.

Functions

The mca_par() function controls the correlator behavior as follows:

mca_par("clock") — returns the value of the current clock time parameter in
microseconds.

mca_par("clock", value) — sets the clock time parameter. The units for value are
microseconds. Valid clock times are of the form X.XeY where X.X ranges from

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION HARDWARE REFERENCE 265

0.1 to 1.6 and Y ranges from 0 to 5. Values outside these bounds will be
rounded to the closest allowed value. The new value takes effect on the next
run command.

mca_par("prescale") — returns the value of the prescale factor.

mca_par("prescale", value) — sets the value of the prescale factor. Valid prescale
values are from 1 to 99. The new value takes effect on the next run command.

mca_par("dbase_mode") — returns the state of the baseline mode. A return value of 1
means delayed baseline mode is in effect. A return value of 0 means delayed
baseline mode is off.

mca_par("dbase_mode", 1|0) — sets the state of the baseline mode. A value of 1
turns on delayed-baseline mode. A value of 0 turns it off. The new mode takes
effect on the next run command.

mca_par("dbase") — returns the value of the delayed baseline from the last data
obtained using mca_get() .

mca_par("cbase") — returns the value of the calculated baseline from the last data
obtained using mca_get() .

mca_par("tcnts") — returns the value of the total-counts monitor channel from the
last data obtained using mca_get() .

mca_par("pcnts") — returns the value of the total-prescaled-counts monitor channel
from the last data obtained using mca_get() .

mca_par("rtime") — returns the value of the run-time monitor channel from the last
data obtained using mca_get() in seconds.

mca_par("clear") — clears the correlator.

mca_par("run") — sends the current clock-time, prescale and delayed-baseline
parameters to the correlator and starts the correlator. The tcount() and
mcount() functions also start the correlator.

mca_par("halt") — stops the correlator. The correlator is also halted when count
intervals specified by tcount() or mcount() have elapsed, or when counting is
aborted using a ˆC .

mca_par("plot") — reads off the real-time data plot from the running correlator. The
data obtained is a very low resolution version of the correlation function.

mca_get(grp, el) — reads the current data from the correlator, and stuffs the data
into the data group grp element el .

266 HARDWARE REFERENCE INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

REFERENCES

Journal articles describing the various supported X-ray diffractometers are available
in the following references.

The four-circle diffractometer is discussed in

W. R. Busing and H .A. Levy, Acta Cryst. 22, 457 (1967).

There is an error in Equation (48) of the above paper. The last line of the equation
should be ω = a� ��� � � R23, R13).

Surface diffraction using a four-circle diffractometer is discussed in

S. G. J. Mochrie, J. Appl. Cryst. 21, 1-3 (1988).

The z-axis diffractometer is described in

J. M. Bloch, J. Appl. Cryst 18, 33 (1985).

The liquid-surface diffractometer supported by spec is described in

J. Als-Nielsen and P. S. Pershan, Nucl. Instrum. Methods 208, 545 (1983).

A. H. Weiss, M. Deutsch, A. Braslau, B. M. Ocko, and P. S. Pershan, Rev. Sci.
Instrum. 57(10), 2554 (1986).

Angle calculations and operating modes for a six-circle diffractometer are presented
in

M. Lohmeier and E. Vlieg, J. Appl. Cryst. 26, 706 (1993).

A description of the CAMAC driver can be found in

G. Swislow, A. Braslau and S. G. J. Mochrie, Interrupt-Driven CAMAC Soft-
ware for UNIX-Based Computers, AT&T Bell TM# 11115-870817-39.

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION REFERENCES 267

INDEX

special character s
!! or !-1 to recall previous command, 16, 51
to begin a comment line, 26, 29, 46, 204
* metacharacter, 26, 50, 83, 89, 91
?

as metacharacter, 26, 50, 83, 89, 91
to list edconf commands, 202

[and] to form arrays, 47
\

to continue a line, 50
to introduce special characters, 49

ˆ to substitute in most recent command, 16, 51
_check0 macro, 124, 154
_chk_lim macro, 154
_cleanup2 macro, 159
_cleanup3 macro, 159
_do macro, 130
_loop macro, 160
_mo_loop macro, 138
_move macro, 154, 160
_pmove macro, 154
_scan_on macro, 160
_scanabort macro, 159
{ and }

to delimit block, 18
to group lines as a parse tree, 45

80386 systems
fractional-second sleeps on, 76

A
A[]

as built-in variable, 56
motor positions in, 19, 29–29, 101, 126, 175
placing values in, 105

a2scan macro, 12, 146
a3scan macro, 12, 146
acos() function, 68, 118
Administrator, spec

dial and user settings set by, 30
manual for, 187–111
news file updated by, 5

AIX, use of spec with, 4
Alpha-Fixed geometry mode, 170–72
Am9513 counter chip, boards that use, 251
an (angle) macro, 135
Angles

dial. See Dial positions (angles)
freezing, 172
user. See User positions (angles)

Arithmetic operators, 59–62
array command, 68, 89
Array. See also A[], G[], mA[], Q[], S[], S_NA[] and

Z[]
adding built-in to u_hook.c, 196
syntax of, 47

array_dump() function, 68
array_fit() function, 68
array_op() function, 68
array_pipe() function, 68
array_plot() function, 68
array_read() function, 68
asc() function, 68, 119
ascan macro, 12, 123, 124, 145, 146, 154–58
asin() function, 68, 118
atan() function, 68, 118
atan2() function, 68, 118
awk UNIX utility

script, show.awk, 41–41
to manipulate spec data files, 35

Azimuth-Fixed geometry mode, 170–72

B
Background subtraction in scans.4, 38
bcd() function, 68, 119
beep macro, 128
Beta-Fixed geometry mode, 171–72
Bitwise operators, 14, 59–62
Boolean operators, 14, 59–61
br (Bragg) macro, 9, 123, 143–44
break statement, 22, 63
bug macro, 128

C
C code, adding site-dependent, 195–97
C math functions, 14
ca (calculate) macro, 10, 123, 143–44
ca_cntl() function, 68, 95
ca_fna() function, 68, 95
ca_get() function, 34, 68, 95
ca_put() function, 34, 68, 95
cal (calculate) macro, 143–44
calc() function, 31, 56, 68, 79–79, 177, 195
calcG macro, 177, 182
calcHKL macro, 32, 159
calcL macro, 182–83
CAMAC (IEEE-583) interface, 3, 34

hardware functions, 94–95
installing driver for, 193
slot assignments, 194, 204–105

268 INDEX INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

camac program, 199
cat macro, 127
cd (change directory) macro, 28, 127
cdef() function, 54, 68, 91, 100, 103
chdir() function, 28, 56, 68, 69
chg_dial() function, 30, 68, 105, 210
chg_offset() function, 30, 68, 106, 210–110
ci (calculate inverse) macro, 10, 143
cleanup macro, 25, 54, 159–59
Clock. See counting
close() function, 17, 68, 76, 82, 86
cnt_mne() function, 68, 100
cnt_name() function, 68, 100
cnt_num() function, 68, 100
COLS built-in variable, 56
com (comment) macro, 128
Command files. See File (command)
Command recall feature (history), 15–16, 79

syntax for, 50
Commands, spec

listing, 26, 48, 80
types of

built-in, 68–119
diagnostic, 26–27
hardware, 68, 94–97
macro, 68, 90–93
program state, 68
utility, 69–81

comment macro, 7, 123, 125, 132
Comments

in a command file, 26
pound sign to begin, 26, 29, 46, 204
syntax for, 46

config file. See File (configuration)
config macro, 128
Configuration editor. See edconf
constant command, 55, 68, 89
Constants

numeric, 45
decimal, 49
floating point, 49
hexadecimal, 49
integer, 49
octal, 49
syntax of, 49

string, 45
escape sequences for, 49
single or double quotation marks as delimiters

for, 49
syntax of, 49

contents program, 40
continue statement, 22, 63
Control key actions

ˆ\ to quit, 5

ˆC
cleanup macro run automatically after, 25,

159–60
control to command level after, 63
files turned off after, 17
to exit edconf program, 203
to halt timer/clock, 12, 101
to interrupt or abort, 10, 12, 13, 54, 133, 145
to reset spec, 46
to stop motors, 10

ˆD to terminate spec session, 55
ˆV to quit, 5

Conversion
between degrees C and kilohms, 152
functions, 68, 119

cos() function, 68, 118
count macro, 140–41
count.mac file, 123
counter_par() function, 68, 100
COUNTERS built-in variable, 56
Counting, 11, 32–33, 100, 140–42
C-PLOT package

spec used with, 35–41
csh UNIX history mechanism, 15
ct (count) macro, 11, 33, 123, 140
Cut points for a four-circle diffractometer, 174
cuts macro, 174, 178
CWD built-in variable, 56
cz (calculate zone) macro, 178–79

D
d (date) macro, 125, 128
d2scan macro, 12, 146
d3scan macro, 12, 146
Data analysis features, 106–17
Data file. See File (data)
data_anal() function, 68, 108
data_bop() function, 68, 108
data_dump() function, 68, 112
data_fit() function, 68, 110
data_get() function, 68, 107
data_grp() function, 68, 106, 107, 114
data_info() function, 68, 107
data_nput() function, 68, 107, 108, 110, 112
data_pipe() function, 68, 113, 113–17
data_plot() function, 68, 110, 112
data_put() function, 68, 107, 108, 110, 112
data_read() function, 68, 110
data_uop() function, 68, 107
date() function, 14–15, 68, 69, 128
Date, returning the current, 69
dcb() function, 68, 119
DEBUG built-in variable, 19, 57

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION INDEX 269

debug macro, 128
def command, 45, 68, 90–93
Default count time, 140
deg() function, 68, 119
delete command, 68, 89
Device names, specifying–204. See also Hardware

configuration
Diagnostic commands, 26
Dial positions (angles), 8, 28

listed in degrees, 30
returning, 104
setting, 105

dial() function, 68, 104
Diffractometer

angle settings, 5
configuration, maintaining, 202
four-circle

alignment, 166
cut points, 174
functions, 177
geometry for operating, 31
macros, 178–79
modes–71
orientation matrix for, 168–68
reference manual for, 165–83
sectors, 173
spec support of, 22
variables, 175–77

geometry, 31–32
liquid surface

geometry for operating, 31
spec support of, 22

operation, beginner’s guide to, 4–13
two-circle

operated by angles alone, 31
spec support of, 22

z-axis
geometry for operating, 31
spec support of, 22

Directory, spec, 198–99
/usr/lib/spec.d for auxiliary files, 58, 199
/usr/local/lib/spec.d for auxiliary files, 4
changing, 28, 69
data, 134
distribution, 188, 197
drivers for driver files, 193
help, 27
macros for macro source files, 123, 175

DISPLAY built-in variable, 57
do macro, 26, 123, 130
dofile() function, 25, 68, 83
Drivers, installing, 193
dscan macro, 12, 36, 146

DSP 6001/6002 CAMAC crate controller, 193
DSP PC004 IBM PC interface card, 193
DSP RTC018 Real-Time Clock, wiring, 253

E
ed macro, 127
edconf program (configuration editor)

to maintain diffractometer configuration, 202
to set dial and user settings, 30, 194

else statement, 21
energy.mac file, 123
eprint command, 68, 83, 86
eprintf() function, 68, 83, 86
Escape sequences for string constants, 49
Executor, 45
exit statement, 63
exp() function, 68, 118
exp10() function, 68, 118
Experiments, automating, 3

F
fabs() function, 68, 118
Fheader macro, 148, 149, 160
File hierarchy, typical spec, 198–99
File(s)

ASCII
command file as, 25
configuration file as, 203
data file as, 22, 35, 162

auxiliary
directory for, 4

command, 25
for least-squares refinement of lattice parame-

ters, 180–83
input, 45
reading from, 83–84, 130
startup, 5, 124

configuration (config)
baud rate for serial lines in, 97
device numbers set in, 97
installed hardware described in, 94
modifying, 128, 203
motor mnemonics in, 59
permission levels for security of, 210
purpose of, 199
reading, 5–5, 99
security through motor restrictions in, 210
slot assignments in, 95, 204–105
updating, 128, 197

data
adding scan results to, 149
ASCII, standard format for, 22, 162
controlling output to, 17–18
inserting comments in, 7

270 INDEX INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

opening, 6
selecting, 6
standard format for, 35–36, 162
summary scan information from, 40
width for columns, 157

distribution, 188
functions for opening and closing, 81
hardware configuration. See File (configuration)
help, 27, 70
index for scans.4, 40, 41
log, 17, 82
macro source, 123
news, 5
reflections, 180
settings, 5

preventing changes made in, 210
reading, 99
structure, 203
updating, 55, 197

state, user’s, 80, 197
file.mac file, 123
file_info() function, 68, 74
Filers)

help, 197
Flabel macro, 148, 160
Flow control, 20–22

with break statement, 63
with conditional statements, 62
with continue statement, 63
with exit statement, 63
with for statement, 62
with while statement, 62

fmt_close() function, 68, 88
fmt_read() function, 68, 88
fmt_write() function, 68, 88
for statement, 21, 62
Four-circle diffractometer. See Diffractometer (four-

circle)
fourc.src file, 123
Fout macro, 148
fprintf() function, 17, 68, 76, 77, 86
freeze macro, 172, 178
FRESH built-in variable, 57
Ftail macro, 149
Functions

calling user-added, 79–79, 195
types of

built-in, 68–119
CAMAC, 68, 94–95
command file, 68, 83–84
conversion, 68, 119
counting, 68, 101
four-circle, 177
GPIB, 68, 95

hardware, 68, 94–97
keyboard input and formatted output, 68, 81, 84
miscellaneous, 68, 70–81
number, 68, 118
output control, 68, 81
plotting and analysis, 68, 106
serial, 68, 97–97
string, 14–15, 68, 118
system, 68, 69
utility, 69–81

G
G[]

built-in variable, 59
geometry parameters stored in, 162, 176, 196

geo_fourc.c file, 175
Geometry

configurations, 143–44
diffractometer, 31–32
four circle, 162–83

get_lim() function, 30, 68, 105
getangles command, 29, 32–32, 126, 147, 159
getcounts command, 58, 68, 100
getenv() function, 68, 74
gethelp() function, 27, 68, 70
getline() function, 56, 68, 83, 84
getval function, 126
getval() function, 68, 78, 85
global command, 18, 68, 89
Global symbols, 18–20, 89
GPIB (IEEE-488) interface, 3, 34

driver for, 193
hardware functions, 95

gpib_cntl() function, 68, 96
gpib_get() function, 56, 68, 96
gpib_poll() function, 68, 96
gpib_put() function, 34, 68, 96
gpset macro, 125, 128
Grammar rules

of keywords, operators, and commands, 64–68
of parser, 45

grep utility
for file searching, 123
to manipulate spec data files, 35

GTERM built-in variable, 58

H
h (help) macro, 27, 125, 128
Hardware configuration, 3–5. See also File (configura-

tion), edconf
reconfiguring, 99
selecting, 194

Help facility, 27

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION INDEX 271

help macro, 27, 123, 128
hi (history) macro, 128
history command, 15, 68, 79
History feature. See Command recall feature
hkcircle macro, 12, 147
hkl.mac file, 123
hklmesh macro, 12, 147
hklscan macro, 12, 36, 147
hkradial macro, 12, 147
hlcircle macro, 147
hlradical macro, 147
HOME built-in variable, 58
hscan macro, 12–12, 36, 147

I
I/O ports, enabling on PC platforms, 200
Identifiers (names)

identifying with whatis(), 75–76
syntax of, 46

if statement, 21, 62
image_get() function, 68
image_par() function, 68
image_put() function, 68
index() function, 15, 68, 118
init_calc() function, 196
initdw macro, 7, 153
initfx macro, 7, 153
initnec macro, 153
initoki macro, 153
Input preprocessor, 45
input() function, 15, 56, 68, 84, 126, 130
Input, translation of keyboard or command file, 45
int() function, 68, 118
Interfaces to user devices. See CAMAC interface,

GPIB interface, and RS-232 interface
io_enable program, 200

J
Joerger SMC Stepper Motor Controller module, 233

K
Keyboard

interrupts, 54–54
Keyboard

reading input from, 84
Keywords

as tokens, 45
listing, 48, 80

Kinetic Systems Model 3655 Timing Generator modifi-
cations, 256

klcircle macro, 147
klradical macro, 147

kscan macro, 12, 36, 147

L
l (list files) macro, 125, 127
Lattice parameters, calculating, 180–83
Least-squares refinement of lattice parameters,

180–83
length() function, 15, 68, 119
less macro, 127
Lexical analyzer, 45
Limits. See Motor (limits)
lm macro, 9, 135
local command, 68, 89, 125
log() function, 68, 118
log10() function, 68, 118
Loop

implemented as a macro in scans, 160–61
while or for, 63

lp_plot macro, 142
ls (list files) macro, 127
lscan macro, 12, 147
lscmd command, 26, 48, 50, 68, 80
lsdef command, 68, 91
lsdef macro, 26, 50, 125
lup (lineup) macro, 12, 36, 146

M
mA[], motor numbers recorded in, 139
mA[], motor numbers reordered in, 137
Macro(s)

arguments, style in manual for, 6
cleanup, 54–54
defining, 22–23, 90–90
definition

argument substitution in, 23, 93
displaying, 90
limits of, 93
listing name and size of, 23–24, 91
printing, 23, 90, 132
removing, 24, 91

library of predefined, 3, 23, 123
listing all currently defined, 23–24, 91
output devices used by, 17
tips for writing, 124–26
types of

basic aliases, 127
basic utility, 128–30
command file, 130
counting, 140–42
four-circle, 178–79
motor, 135–39
plotting, 142–42
printer initialization, 153
reciprocal space, 143–44

272 INDEX INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

saving to output device, 132
scan, 145–49, 154–61
start-up, 133
temperature control, 149–52
utility, 127
zone, 179–80

mail macro, 127
Manual

administrator ’s, 187–111
conventions of type styles in, 6
four-circle reference, 165–83
reference, 45–119
standard macro reference, 123–62
user, 3–41

Math functions, 14, 68, 118
MCA. See Multichannel Analyzers
mca_get() function, 68, 94
mca_par() function, 68, 94
mca_put() function, 68, 94
mca_sel() function, 68, 94
mca_sget() function, 68, 94
mca_spar() function, 68, 94
mca_sput() function, 68, 94
mcount() function, 33, 68, 95, 100, 101
measuretemp macro, 149–51, 161
Memory

usage, showing, 80
memstat command, 68, 80
mesh macro, 12, 146
Metacharacters, ? and *, 26, 50
mi (move incident) macro, 143
mk (move HKL) macro, 123, 143
Motor(s)

controller registers, 29–30
controller types, 206
controlling, 101–6
limits

getting, 105, 135
setting, 30–31, 106, 135–37
software, 9–9

listing information for, 8
macros, 135–39
moving, 7–10, 28–31, 101, 135
parameter

assignment, 205
returning, 102

positions
(HKL) corresponding to set of, 10
displayed on screen, 10
reading, 137
setting, 7–10
storage of, 30

returning the mnemonic or name of, 102
securing from unauthorized use, 210–110

stopping, 10, 101, 159, 234
unusable, 101

motor.mac file, 123
motor_mne() function, 68, 102
motor_name() function, 30, 68, 102
motor_num() function, 68, 102
motor_par() function, 68, 78, 102
MOTORS built-in variable, 58
move_all command, 29, 31, 32, 68, 95, 101, 126, 135
move_cnt command, 68, 101
move_em macro, 126, 135, 160
Multichannel analyzers (MCAs), 32, 101
mv (move) macro, 10, 123, 135, 137
mvd (move dial) macro, 135
mvr (move relative) macro, 135
mz (move zone) macro, 178–79

N
National Instruments GPIB controller, 193
ned macro, 127
newfile macro, 6, 35, 123, 133
newmac macro, 130
newsample macro, 133
NPTS loop variable, 159
Number

functions, 68, 118
notation, 14, 49

O
off() function, 17, 68, 76, 82, 126
offd (off data file) macro, 17, 128
offp (off printer) macro, 17, 128
offsim (off simulate mode) macro, 128
offt (off tty) macro, 17, 128
Omega Equals Zero geometry mode, 169
Omega-Fixed geometry mode, 169, 172
on() function, 17, 68, 76, 77, 82, 126
ond (on datafile) macro, 17, 128
onp (on printer) macro, 17, 128
onsim (on simulate mode) macro, 128
ont (on tty) macro, 17, 128
open() function, 17, 68, 76, 77, 81, 82
Operators

tokens as, 45
types of

assignment, 61
binary, 60
ternary, 61
unary, 59

or0 macro, 178–78
or1 macro, 178
Oregon Micro Systems PCX motor controller PC inter-

face card, 193

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION INDEX 273

Orientation matrix, 168–68
Output devices, commands for saving to, 132
Output files, controlling, 81

P
p (print) macro, 14, 125, 128
pa (parameters) macro, 143
PAGER built-in variable, 58
Parse tree, 45–46, 63
Parser, grammar rules of, 45
PC platforms

enabling I/O ports on, 200
Pheader macro, 148, 149, 160
Phi-Fixed geometry mode, 170, 172
PI built-in variable, 18, 58
pl (plane) macro, 135
Plabel macro, 148, 149, 160
plot macro, 142, 142, 161
plot.mac file, 123
plot_cntl() function, 68, 110
plot_move() function, 68, 113
plot_range() function, 68, 110, 113
plot_res macro, 123, 142
Plotting

functions, 106–17
macros, 142–42
scans, 13, 41

Points, maximum number of data, 106
port_get() function, 68, 98
port_getw() function, 68, 98
port_put() function, 68, 98
port_putw() function, 68, 98
Pout macro, 148, 149
pow() function, 68, 118
powder.mac file, 123
prcmd macro, 132
prdef command, 23, 26, 50, 68, 90
print command, 14, 55, 68, 82, 86
Printer

controlling output to, 17–18
initialization macros, 153
selecting, 6
setting top-of-form position on, 7

printf() function, 17–18, 22, 68, 82, 86, 139
Printing, formatted, 17–18, 86
Propagation of errors formalism in scans.4, 40
pts (points) macro, 13, 142
pwd (print working directory) macro, 127

Q
Q[]

built-in variable, 59
four-circle coordinate variables stored in, 31, 175

qcomment macro, 125, 132
qdo macro, 26, 123, 130
qdofile() function, 25, 68, 84

R
r2d2.src file, 123
rad() function, 68, 119
rand() function, 68, 118
rdef command, 45, 68, 90–93
read_motors() command, 68
read_motors() function, 56, 101, 105
README files for up-to-date information on

devices supported in the config file, 204
drivers currently available, 193

reconfig command, 30, 68, 99
reflex macro, 181
reflex_beg macro, 180
reflex_end macro, 182
Relational operators, 14, 59–62
resume macro, 145, 160
ROWS built-in variable, 58
rplot_res macro, 142
RS-232 (serial) interface, 3, 34

hardware functions, 97–97
RToT_0 macro, 152

S
S[]

accessing contents of scalers through, 32
as built-in variable, 58
loading, 100

S_NA[], identifying scaler through, 32
savcmd macro, 132
save macro, 133–34
savegeo macro, 133, 134
saveusr macro, 133, 134
savmac macro, 124, 132
savstate command, 68, 80
Scaler channel assignments, 140
Scan header, 13, 35–36, 148, 154, 157
Scan types

absolute-position motor, 12, 146
powder-averaging, 102, 148
reciprocal space, 12–12, 147
relative-position motor, 12, 146
temperature, 148

Scan(s)
aborting, 13, 145, 159
built of macros, 12
grid, 147
invocation syntax, 145
macros, 145–49, 154–61
merging in scans.4, 38
motor, 146, 156

274 INDEX INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

number, 35, 37
output, customizing, 148–49
powder mode, 148
reciprocal space, 146–46, 157
restarting an aborted, 13, 145
retrieving with scans.4, 37
sample output, 12
summary utilities, 40
temperature, 148

scan_count macro, 161
scan_head macro, 154, 158
scan_loop macro, 160
scan_move macro, 154, 160
scan_plot macro–42, 160
scan_tail macro, 161
scans.4 C-PLOT user function, 36–40

background subtraction with, 38
data columns used by, 39–39
error bars returned by, 40
file conventions, 38
file indexing by, 40
invoking, 36–37
memory for strings and scan numbers, 39
merging scans with, 38
options, 37
retrieving scans with, 37

scans.mac file, 123
scans1.mac file, 123
Sectors for four-circle diffractometers, 173
Security features of spec, 3, 210–110
sed utility to manipulate spec data files, 35
ser_get() function, 34, 56, 68, 97
ser_par() function, 68, 97
ser_put() function, 34, 68, 97
set macro, 8, 30, 123, 135, 136, 210
set_dial macro, 8, 135, 136
set_lim() function, 30, 68, 106, 136, 210
set_lm macro, 9, 31, 123, 135–36
set_sim() function, 68, 99, 129
setaz macro, 178
setlat macro, 178
setmode macro, 178
setmono macro, 178
setplot macro, 13, 133, 142–42, 145
setpowder macro, 148
setscans macro, 133, 145
setsector macro, 178
setslits macro, 133
settemp macro, 149, 149–52
settings file. See File (settings)
shell escapes, See Subshells
show_cnts macro, 12, 123, 140–41
showscans program, 41–41

showtemp macro, 149–50
Simulation mode, 99
sin() function, 68, 118
Site-dependent C code, adding, 195–97
site.mac file, 124
sleep() function, 68, 76, 137
slit.mac file, 123
sock_io() function, 68, 80
Software motor limits, 9–9. See also Motor (limits)
spec

as a calculator, 14–15
C-PLOT package used with, 35–41
customized with C code, 195–97
exiting, 5
features, 3
installation, 187–94
internal structure, 45–46
motor security of, 3, 210–110
purpose of, 3, 28
standard scans in, 145
start-up of four-circle version from a UNIX shell, 4
terminating, 5
UNIX utilities used with, 35–41
updating, 197–97
user interface, 14–35
welcome message, 4

SPEC built-in variable, 58
spec.mac command file, 25, 124
spec_par() function, 52, 68, 76–79, 81, 83, 84, 102
specadm user account, 187, 188
SPECD built-in variable, 58, 131
Special characters in string constants, listing of, 49
split() function, 68, 119
splot macro, 13, 142–42
splot_res macro, 142
sprintf() function, 15, 68, 119
sqrt() function, 68, 118
srand() function, 68, 118
sscanf() function, 68, 119
start.mac file, 123
startgeo macro, 134
starttemp macro, 133
startup macro, 5–6, 133
stop() function, 68, 99
String

functions, 68, 118
patterns, 50

stty UNIX command, 54
su command, 188
Subshells, spawning, 27–28, 69, 127
substr() function, 15, 68, 119
Sun computers, use of spec with, 4
surf.src file, 123

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION INDEX 275

syms command, 19, 26, 50, 68, 89
sync command, 30, 68, 102
Syntax conventions, 46–68
Syntax error, 45
System V/386 compatible UNIX

serial line modes for, 97
use of spec under, 200

sz (set zone) macro, 178–79

T
tan() function, 68, 118
tar command, 189
tcount() function, 32–33, 68, 95, 100, 101
te macro, 149–50
temper.mac file, 123
Temperature control, macros for, 149–52
teramp macro, 149, 152
TERM built-in variable, 58
Ternary operator for spec calculator, 14. See also

Operators
test UNIX utility to check for file’s existence, 126
th2th macro, 146
Three Circle geometry mode, 170
time() function, 15, 35, 68, 69
Timer/clock. See also Counting

halted with ˆC, 101
starting, 100

Tokens, input text broken into, 45
tty_cntl() function, 50, 68, 87, 88
tty_fmt() function, 50, 68, 88
tty_move() function, 50, 68, 87, 113
tw (tweak) macro, 11, 135
twoc.mac file, 123

U
u macro, 28, 123
U[]

built-in variable, 59
u_hook.c file, 175, 195
uan macro, 135
ubr macro, 143
uct macro, 12, 123, 140, 141, 145
umk macro, 143
umv (updated-move) macro, 10, 123, 135, 137, 145
umvr macro, 135
undef command, 68, 91
unfreeze macro, 172, 178
unglobal command, 68, 89
UNIX commands

in macro definitions, 27–28
macros for common, 127

UNIX epoch, 69
UNIX utilities, spec used with, 35–41

unix() function, 27–28, 53, 68, 69
Updated activities

counting, 141
moving, 10, 137, 143
plotting, 142–42
scans, 145
setting UPDATE, 137, 143, 145

upl macro, 135
User account for administering spec, 187
USER built-in variable, 59
User positions (angles), 8, 28

listed in degrees, 30
listing, 29
offset between dial angle and, 104
returning, 104

user() function, 68, 105
util.mac file, 123
uwm macro, 135

V
Variable arguments, style in manual for, 6
Variables

as tokens, 45
attributes

built-in, 55–59
constant, 19, 55, 68, 89
global, 18–19, 55, 68, 89, 133
immutable, 55
local, 55, 68, 89, 125

changing, 19
defined through usage, 18, 55
four-circle, 175–77
nonglobal, 68, 89

limits of, 46
symbols for, listing, 19–20
syms, 68, 89
types

array, 55
number, 55
string, 55

VENIX
quit control character on, 5

VERSION built-in variable, 59
vi (visual editor) macro, 127
vme_get() function, 68, 98
vme_get32() function, 68, 98
vme_move() function, 68, 99
vme_put() function, 68, 98
vme_put32() function, 68, 99

W
w (wait) macro, 10, 128
wa (where all) macro, 8, 123, 135, 138

276 INDEX INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

wait() function, 33, 68, 77, 78, 99, 101
waitall macro, 128
waitcount macro, 128
waitmove macro, 32, 126, 128
Warning messages, 5
wh macro, 7, 123, 143–44
whatis() function, 21, 68, 75–76, 125
whats macro, 128
while statement, 21, 62
wm (where motors) macro, 9, 135

X
X rays, counting. See counting

Y
yesno macro, 126, 128
yesno() function, 68, 85

Z
Z[]

built-in variable, 59
four-circle geometry zone mode, 177, 179

zaxis.src file, 123
Zone geometry mode, 170, 172, 179–80

INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION INDEX 277

278 INDEX INTERIM WORK-IN-PROGRESS (8/16/01) NOT FOR GENERAL DISTRIBUTION

spec (1) (CSS Utilities) spec (1)

NAME
spec � � -ray diffractometer control and general data acquisition package

SYNOPSIS
spec [�������
	��] [��
 geometry] [��� my_name] [��� user] [��� tty] [��� fake_tty] [���
debug] [��� option=value] [��� fd pid] [��� directory]

DESCRIPTION
spec provides a software environment for the operation of an X-ray diffractometer and other
data-acquisition instruments. spec contains a sophisticated command interpreter that uses a
C-like grammar and is partially modeled on the standard UNIX utility awk. spec supports a
variety of X-ray diffractometer configurations. The diffractometer geometry is chosen by the
program name. Those currently supported include:

spec ��� eneric instrument control
fourc ��� tandard four-circle diffractometer
twoc ��� tandard two-circle diffractometer
sixc ��� ix-circle diffractometer (δ, θ, χ, φ, µ, γ)
psic ��� n S4-D2 six-circle diffractometer
kappa ��� appa diffractometer
surf ��� arious liquid surface diffractometers
zaxis ��� tandard z-axis diffractometer

The following options are recognized:

��� Fresh start. All symbols are set to their default values and the standard macros
are read to establish the default state.

��� Clean and fresh start. All symbols are set to their default values but no command
files are read and no macros are defined. Only the built-in commands are avail-
able.

��� Simulation mode. No hardware commands are issued. If started in simulation
mode, simulation mode cannot be turned off without restarting the program.

��	 Yes, change motor controller registers initially if they disagree with the settings
file. Normally, spec requires you to confirm such a change. This flag would be
useful if you know controller power had been turned off.

��� Indicates that spec should operate in quiet mode and allow output to all devices to
be turned off. This option is only valid when used with the ��� option.

��
 geometry
Force loading of macro files and activation of geometry calculations for the speci-
fied geometry, while using the configuration files taken from the name by which
spec is invoked.

��� my_name
Use my_name for setting the interactive prompt and the name of the directory con-
taining the config, settings and state files. Normally the name by which spec is
invoked is used.

��� user Use user’s last saved state as the current user’s initial state.

��� tty Use the current user (or user’s) last saved state from the terminal specified by tty.
The terminal can be specified as ��� /dev/tty01 or ��� tty01.

MANUAL PAGE 279

��� fake_tty
This option creates a user state associated with fake_tty, which may be any name.
This option allows you to bypass the locking feature that prevents multiple
instances of spec to be started by the same user from the same terminal.

��� debug Sets the initial value of the debugging variable DEBUG to debug. The available
debugging categories are described on page 57 in the Reference Manual. A value of
192 is useful for debugging hardware problems.

-o option=value
Initializes the spec_par() option to value. The available spec_par() options are
described on page 76 in the Reference Manual.

��� fd pid Indicates that spec input is coming from a pipe from another program. The argu-
ment fd is the file descriptor that spec should use for standard input. The argu-
ment pid is the process ID of the spawning process. If fd is zero, spec will not re-
echo input from the file descriptor to spec’s standard output.

��� direc Use direc instead of the compiled-in name (usually /usr/local/lib/spec.d) or the
SPECD environment name as the auxiliary file directory.

FILES
(SPECD is the auxiliary file directory, normally /usr/local/lib/spec.d.)
(geom is the first four letters of the name by which spec was invoked.)
(spec is the complete name by which spec was invoked, as in fourc, twoc, etc.)

./spec.mac Optional private command file always read at start-up.
SPECD/site.mac Optional site command file always read at start-up.
SPECD/site_f.mac Optional site command file only read when starting fresh.
SPECD/standard.mac Standard macro definitions.
SPECD/geom.mac Geometry macros.
SPECD/spec/geom.mac More geometry macros.
SPECD/spec/config Hardware configuration file.
SPECD/spec/settings Motor settings file.
SPECD/spec/conf.mac Optional configuration command file always read at start-up.
SPECD/spec/userfiles/hdw_lock Spectrometer lock file.
SPECD/spec/userfiles/user_tty.S User ’s state file. Uses only first 6 letters of user and tty.
SPECD/spec/userfiles/user_tty.P User ’s data points file.
SPECD/spec/userfiles/user_tty.L User ’s lock file.
SPECD/help/∗ Help files.

280 MANUAL PAGE

