

Searching for the Higgs at the LHC

Philip Lawson

Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009

Outline

- Theory & Background of Higgs Mechanism
- Production Modes
- Decay Modes
 - Discovery Channels
- Invisible Higgs

Outline

- Theory & Background of Higgs Mechanism
- Production Modes
- Decay Modes

Emphasis on SM

- Discovery Channels
- Invisible Higgs

The Higgs Mechanism

- Describes the way in which gauge bosons obtain a mass by interacting with the Higgs Field
 - Mechanism requires Higgs Field to have non-zero vacuum expectation value: spontaneous symmetry breaking of electroweak symmetry
- Successfully explains the mass ratio between W^{\pm} / Z gauge bosons
 - Correctly predicted to 5 decimal places
 - Leptons and quarks also acquire mass as a result of interaction with the Higgs
- Higgs field has 4 degrees of freedom
 - 3 DOF mix with the W^{\pm} / Z bosons, giving them mass
 - 4th DOF manifests as the Higgs boson (scalar)

Searching for the Higgs

- Higgs is difficult to search for since couplings to the Higgs are proportional to mass
 - Coupling is small for the light particles that are most copiously available
- Mass of the Higgs is unknown
 - SM + spontaneous symmetry breaking predicts the existence of Higgs boson(s), but not mass
 - M_H depends on coefficient of self-interaction λ . No other observables depend on λ in a measurable way
- Current LEP limits on M_H
 - 114.4 GeV < *M_H* < 182 GeV (indirect)

5

- $qq \rightarrow WH / ZH$
- σ is x10 below GF but VBF gives much cleaner signal in detectors

Most dominant production mode (cross-section)

Associated Production with W,Z

Vector Boson Fusion (VBF)

- σ is x15-30 below GF, but allows for unique signatures using W/Z as tag
- Associated Production with Heavy Quarks
 - σ is x30-60 below GF. Difficult jet/QCD backgrounds

Gluon Fusion (GF)

Higgs Production Modes

 $gg \rightarrow H$

Higgs Production Cross Sections at LHC

GF VBF AP (W,Z) AP (t)

Gluon-Fusion Production

- \sim 10 orders of magnitude greater production σ in low-mass range
- Dominant production factor for $H \rightarrow \gamma \gamma$ based searches
 - As we will see, this is one of the *cleanest* decay modes in the low-mass (~140 GeV) range
- Lots of QCD background issues at LHC with gluon-fusion production
 - This is why, despite the dominant production cross-section, much effort has been made to calculate/understand the other less dominant production modes

Vector Boson Fusion Production

- Provides distinctive signature via forward tagging jets
 - Good rejection of QCD background via central jet veto!

- Importance in low-mass region
 - Dominant production mode for H → TT decays (relevant in low-mass region)

Associated Production with W, Z

- Sometimes called *Higgs-strahlung*
- Clean signatures from leptonic decays of W, Z
 - However, possible high QCD background from hadronic decays of W, Z
 - Requires summation of W, Z leptonic decays to increase statistics due to low branching ratio of these decays

Associated Heavy Quark Production

- Complex final states. Dominated by [$ttH \rightarrow bb$]
 - bb state dominates BR at: $100 \text{ GeV} < M_H < 120 \text{ GeV}$
 - Problem: dominant background: tt + jets
- Successful work with this channel requires
 - Good b-tagging!
 - Very good knowledge of jet background

SM Higgs decay branching ratio as a function of $M_{\rm H}$

SM Higgs decay branching ratio as a function of $M_{\rm H}$

"low mass" range: 110 GeV $\leq M_H \leq 130$ GeV

SM Higgs decay branching ratio as a function of $M_{\rm H}$

"low mass" range: 110 GeV $\leq M_H \leq 130$ GeV

"intermediate mass" range: 130 GeV $\leq M_H \leq 180$ GeV

SM Higgs decay branching ratio as a function of $M_{\rm H}$

A. Djouadi [arXiv: hep-ph/0503172]

"low mass" range: I I 0 GeV $\leq M_H \leq 130$ GeV "intermediate mass" range: I 30 GeV $\leq M_H \leq 180$ GeV "high mass" range: I 80 GeV $\leq M_H \leq 1$ TeV

The "low-mass" Range @ the LHC

- In range where: $M_H < 2M_{W,Z}$ fermionic decay modes dominate
- Higgs will decay to heaviest fermions allowed by energy conservation
- However, qq final states have too much QCD background at LHC to be useful as a search channel
 - This is why emphasis is placed on other channels ($H \rightarrow \tau \tau$, $H \rightarrow \gamma \gamma$) despite their lower branching ratios

Primary Search Channels @ LHC

- Four Lepton Decay: $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ (4e, 4µ, 2e2µ)
- Two Photon Decay: $H \rightarrow \gamma \gamma$
- Tau Pair Decay: $H \rightarrow \tau^+ \tau^-$
- ► W-Boson Pair Decay: $H \rightarrow W^+W^- \rightarrow \ell \nu \ell \nu (\ell = e^{\pm} \text{ or } \ell = \mu^{\pm})$

$H \rightarrow ZZ^* \rightarrow 4$ lepton Decays

- Provides clean signature for wide range of M_H above ~130 GeV
 - Except in range $(2m_W, 2m_Z)$ where branching ratio is dominated by $H \rightarrow W^+ W^-$
- Background:
 - Irreducible: Direct ZZ^* and $Z\gamma^*$ production
 - Reducible: *tt*, *Zbb*, *ZW* production
- At least one Z is expected to be on mass shell
 - Two-lepton invariant mass is used to confirm this and reject false events
- Method relies heavily on:
 - lepton reconstruction
 - invariant-mass resolution

Background Suppression in 4 Lepton Decay

Backgrounds from ZZ^{*}, tt, Zbb processess are supressed via:

- Require leptons to be isolated in the tracker
- Cuts on 2-lepton & 4-lepton invariant mass
 - Require at least one of the 2-lepton invariant mass to be consistent with onshell Z
- Require p_T threshold
 - For CMS typically p_T > 20GeV for largest
 p_T lepton

Four-lepton invariant mass of $H \rightarrow ZZ^* \rightarrow 4\ell$ signal with $M_H = 130, 150, 170 \text{ GeV}$

$H \rightarrow ZZ^* \rightarrow 4e$ In "intermediate" M_H Range

Four-electron invariant mass of $H \rightarrow ZZ^* \rightarrow 4e$ signal with $M_H = 130, 150, 170$ GeV

S.Abdullin et. al., CMS Note 2003/033

4 Lepton Decay in "high" M_H Region

 $H \rightarrow ZZ^* \rightarrow 4\ell$ signal presents an important discovery channel in "high" mass region as well

Buescher [arXiv: hep-ph/0504099]

for M_H = 300 GeV in ATLAS experiment.

ATLAS experiment.

Discovery Potential of 4 Lepton Decay

Very high discovery potential in $H \rightarrow ZZ^* \rightarrow 4\ell$ channel

$H \rightarrow \gamma \gamma$ Decays

- Decay mode only detectable in region: 80 GeV $< M_H < 150$ GeV
- Requires excellent energy and angular resolution!
- Method relies on detecting mass peak above:
 - Irreducible background from prompt γγ continuum
 - Reducible background from direct γ production + QCD jet production
- Simulation studies have brought sources of reducible background to ~20% of irreducible background
- Efficiency and purity of this method depend heavily on minimum-bias event model and p_T spectrum of H
 - high p_T tracks used to distinguish Higgs events from pileup

$H \rightarrow \gamma \gamma$ - Event Selection

Signal Process	Cross-section (fb)	Background Process	Cross-section (fb)
$gg \rightarrow H$	21	γγ	562
VBF H	2.7	Reducible γj	318
ttH	0.35	Reducible jj	49
VH	1.3	$Z \rightarrow e^+ e^-$	18

Expected cross-sections for different signal (M_H = 120 GeV) and background processes within a mass window of m_{YY} = ±1.4 σ

Expected Performance of the ATLAS Experiment, CERN-OPEN-2008-020

$H \rightarrow \gamma \gamma$ - Inclusive vs VBF

~83% of $\sigma_{\rm H}$

Di-photon invariant mass distribution for inclusive $H \rightarrow \gamma \gamma$ signal. Yellow represents irreducible prompt $\gamma \gamma$ production and j γ QCD processes

~10% of σ_H

Di-photon invariant mass distribution for VBF, $H \rightarrow \gamma \gamma$.Yellow represents irreducible jj $\gamma \gamma$ background

A BOSTONIA

S.Abdullin et. al., CMS Note 2003/033

$H \rightarrow \gamma \gamma$ - Discovery Potential

Expected signal significance for a Higgs boson using the $H \rightarrow \gamma \gamma$ decay for 10fb^{-1} of integrated luminosity as a function of the mass using a variety of analysis/fit methods.

Expected Performance of the ATLAS Experiment, CERN-OPEN-2008-020

$H \rightarrow \tau^+ \tau^-$ Decays

- Provides one of the best sensitivities in "low" M_H range
- Searches based on
 - double leptonic decay: $qqH \rightarrow qq\tau\tau \rightarrow qql\nu\bar{\nu}l\nu\bar{\nu}$
 - lepton-hadron decay: $qqH \rightarrow qq\tau\tau \rightarrow qql\nu\bar{\nu} + had + \nu$
- TT invariant mass reconstruction based on collinear approximation
 - Assume τ directions are collinear to measured decay products
- Primary background from Z+jets with $Z \rightarrow \tau^+ \tau^-$
 - Other backgrounds: W+jets, tt, di-jets
- Analysis methods rely on VBF
 - Lack of color flow between interacting partons results in diminished hardonic activity in barrel region
 - Forward tagging jets used to reject SM background

$H \rightarrow \tau^+ \tau^-$ - Signal vs Background

Reconstructed TT invariant mass for M_H of 120 GeV in the eµ channel after application of all cuts (except mass window)

Buescher [arXiv: hep-ph/0504099]

Reconstructed TT invariant mass for M_H of 135 GeV in the ℓ +hadron channel after application of all cuts (except mass window)

Discovery in "low" M_H region possible with 30 fb⁻¹

Expected Performance of the ATLAS Experiment, CERN-OPEN-2008-020

W Boson Pair Decay

 $H \rightarrow W^+ W^- \rightarrow l \nu l \nu$

- Provides most sensitive search in range: $2m_W < M_H < 2m_Z$
 - Due to dominating $H \rightarrow WW$ branching ratio in this mass range (~95%)
- Primary source of background from direct W⁺W⁻ production (and tt production)
 - Strongly reduced by cuts based on angular correlation of the W decay products due to spin correlation of the two W bosons in H frame (Lepton Opening Angle)
 - *tt* background reduced via veto on central jets
 - Can also extend search to utilize VBF production (tagging jets in final state)
- Problem: Cannot reconstruct Higgs mass peak due to neutrinos in final state!

W Boson Decay - Neutrinos in Final State

- Presence of high p_T neutrinos makes reconstruction of Higgs mass peak unfeasible.
- Excess of events above expected backgrounds used to establish presence of Higgs
- Transverse mass based on lepton p_T and missing E_T is used to discriminate between signal and background
 - In the inclusive channel:

$$m_T = \sqrt{2P_T^{ll} \not\!\!E_T (1 - \cos \Delta \varphi)}$$

Buescher [arXiv: hep-ph/0504099]

Transverse mass distribution for summed $H \rightarrow WW \rightarrow |v|v$ signal with M_H of 150 GeV

W Boson Decay - VBF Event Selection

Further signal enhancement obtained via VBF production mode

- Presence of tagging jets and veto on central jet activity allow additional suppression of background
- Result: Signal sensitivity less affected by prediction of background rates

Distribution of transverse mass for M_H of 160 GeV and backgrounds in the eµ channel. Right plot shows same distribution after relaxing kinematic cuts.

W Boson Decay - Lepton Opening Angle

- Presence of $H \rightarrow WW$ signal can also be determined via the difference of the azimuthal angle between the two leptons in the final state.
 - Expect to see structure at small $\Delta \Phi$ characteristic of spin-0 resonance

Distribution of azimuthal opening angle $\Delta \Phi$ between two leptons for events in the signal region (left) and events outside of the signal region (right)

Buescher [arXiv: hep-ph/0504099]

AS BOSTON

m_T < 175 GeV

m_T > 175 GeV

W Boson Decay - Discovery Potential

Significance as a function of different Higgs masses with a luminosity of 5 fb⁻¹, solid line for kinematic cuts optimized at $M_H = 165$ GeV, dashed line for kinematic cuts optimized as a function of the Higgs mass

Discovery potential in $2m_W < M_H < 2m_Z$ range with 5 fb⁻¹

V. Drollinger et. al., CMS Note 2006/055

Invisible Higgs Decays

- Several extensions to SM allow for the Higgs boson (or the lightest scalar which plays its role if several are present) to have substantial branching ratios to invisible decay products
- In such models, the light Higgs will decay to Goldstone bosons, Majorons, or a pair of the lightest SUSY particles (LSP)
 - None of these interact with the detector
- Occurs in a variety of SUSY extensions to SM:
 - light neutralinos, spontaneously broken lepton number, radiatively generated neutrino masses, additional singlet scalars, right handed neutrinos in the extra dimensions of TeV scale
- Ex SUSY: Current limits on M_H in general SUSY model kinematically allow for a decay into two LSPs with a BR as high as 0.7
- Ex Models with 4th gen. leptons allow for $H \rightarrow vv'$ decays

Invisible Higgs - Impact on SM Physics

- Only invisible Higgs decay in SM via: $H \rightarrow ZZ^* \rightarrow 4v$
 - BR ~ 1% for M_H > 180 GeV and smaller for lower M_H
- In BSM scenarios invisible Higgs decays can have substantial BR in "intermediate" mass range: 115 GeV < M_H < 180 GeV</p>
- Detection of Higgs in "intermediate" range relies heavily on
 - WW $\rightarrow (\ell v) (\ell v)$
 - ZZ^{*} → 4ℓ
- Reduction of these BRs due to substantial invisible decays could impede/ prevent detection of the Higgs
- Presence of invisible Higgs decay modes would require development of new search strategies in the "intermediate" mass range (or beyond)

Invisible Higgs - Search Strategies

- Invisible Higgs detection in dominant GF production not feasible
 - Would have to consider $gg \rightarrow H + jet$ signatures containing a monojet with large E_T and substantial missing E_T for the event.
 - Such signals overwhelmed by QCD background
- VBF channel combined with tagging jets to reduce QCD background presents viable option
 - Recently shown to be able to probe down to BR ~ 25% with 30 fb⁻¹ [CMS AN -2008/083]
 - Can serve to complement AP channel with high statistics
- Associated production with W / Z provides clean signature by exploiting leptonic decays of W / Z

Invisible Higgs - WH vs ZH Channel

- Two options for invisible Higgs decays in associated VB production
 - $qq' \rightarrow W^* \rightarrow W + H \rightarrow (\ell v) + invisible$
 - Signature: single lepton + missing E_T
 - $qq' \rightarrow Z^* \rightarrow Z + H \rightarrow (\ell^+ \ell^-) + invisible$
 - Signature: di-lepton + missing E_T
- Production rate of WH ~5-6 greater than ZH in "intermediate" mass range
- However, background in WH due to off-shell W^{*} production overwhelms signal
 - Not a problem for ZH channel since mass-cuts can be made based on di-lepton invariant mass
- > ZH channel favored for search despite relatively lower production rate

Invisible Higgs - Background in WH Signal

 $qq' \rightarrow W^* \rightarrow W + H$ $\checkmark \ell \nu \quad \checkmark \text{invisible}$

- Charged Drell-Yan (DY) production via: $qq' \rightarrow W^{(*)} \rightarrow \ell v$
- Neutrino decay of Z: $qq' \rightarrow WZ \rightarrow (\ell v)(vv)$
 - Irreducible, yet low BR in SM
- Lepton ID failure: $qq' \rightarrow WW' \rightarrow (\ell v)(\ell'v')$
 - If one of the leptons is outside the fiducial volume, it will misrepresent missing E_{T}
- ► Jet ID failure: $qq' \rightarrow W \rightarrow \ell v + jet$
 - Failure to identify the jet results in misidentification as missing E_{T}
- Jet misidentification: $qq' \rightarrow Z + jets \rightarrow (\nu\nu') + jets$
 - Jet misidentified as lepton gives false signal

Invisible Higgs - Background in ZH Signal

- ▶ DY production: $qq' \rightarrow Z^* \rightarrow (\ell^+ \ell^-) + jets$
 - Failure to ID jets results in false missing ET signature
- Irreducible neutrino decay of Z: $qq' \rightarrow ZZ' \rightarrow (\ell^+ \ell^-)(\nu \nu')$
- Lepton ID failure: $qq' \rightarrow WZ \rightarrow (\ell v)(\ell^+ \ell^-)$
 - Failure to identify one lepton results in false signal
- WW production: $qq' \rightarrow WW \rightarrow (\ell v) (\ell v)$

Invisible Higgs - Cuts in ZH Channel

Select events with exactly two leptons, same flavor and opposite sign

- Kinematic requirement: $|M_{\ell\ell} M_Z| < 10 \text{ GeV}$
- Transverse energy threshold: $E_T^{\ell} > 10 \text{ GeV}$
- Fiducial cut: $|\eta^{\ell}| < 3$
- Hadronic veto on jets in the barrel region
 - Reject jets with $E_{T^j} > 30 \text{ GeV}$ or $|\eta^j| < 4$
- Enforce missing transverse momentum threshold
 - Requite: missing $p_T > 30 \text{ GeV}$

Invisible Higgs - ZH BR Limits

P. Gagnon - ATLAS Physics Workshop - May 2003

 $E_{T^{\ell}}$ distribution for signal (dashed) and background (solid) in WH channel for 100 fb^{-1}

Missing p_T distribution for signal (dashed) and background (solid) in ZH channel for 100 fb^-1 $\,$

Signal for ZH channel comparable to background (due to ZZ and WZ cross sections). Better signal ratio expected once LHC measures these cross sections.

39

Invisible Higgs - Discovery Potential

ATLAS sensitivity at 95% CL for 30 fb⁻¹ of integrated luminosity

$$\xi^2 = \frac{\sigma(H) \times \text{BR}(H \to \text{inv.})}{\sigma_{\text{SM}}(H)}$$

- ξ^2 < 1: Observation of invisible Higgs possible with SM σ
- $\xi^2 > I$: Observation of invisible Higgs requires enhanced σ

M. Heldmann, Acta Physica Polonica B, vol. 38, Issue 3

Conclusions

- The Search for Higgs boson(s) is a complex problem requiring multifaceted approach
 - All search channels needed to probe entire mass range
 - No single channel alone will suffice, since discovery of a Higgs boson in one mass region does not exclude existence in other regions
- Background considerations strongly affect signal significance at LHC
 - Signals with diminished production rates can play substantial roles
- Invisible Higgs searches are important tools for:
 - Verifying SM predictions
 - Providing early indication for new physics

Backup Slides

