LHC Physics GRS PY 898 B8

Lecture #3

Tulika Bose

Trigger & DAQ: Part 1

LHC

Proton - Proton Protons/bunch Beam energy Luminosity

3564 bunch/beam 10¹¹ 7 TeV (7x10¹² eV) 10³⁴cm⁻²s⁻¹

Beam crossings: LEP, Tevatron & LHC

- LHC: ~3600 bunches (3564 bunches or 2808 filled bunches)
 - And same length as LEP (27 km)
 - Distance between bunches: 27km/3600=7.5m
 - Distance between bunches in time: 7.5m/c=25ns

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^{7} mb⁻¹Hz
 - $\sigma(pp) = ~80 \text{ mb}$
 - Interaction Rate, R = 8x10⁸ Hz!
 - Events/beam crossing:
 - $\Delta t = 25 \text{ ns} = 2.5 \times 10^{-8} \text{ s}$
 - Interactions/crossing=20.0
 - Not all p bunches are full
 - 2808 out of 3564 only
 - Interactions/"active" crossing = 20.0 x 3564/2835 = 25

Summary of operating conditions:

A "good" event (say containing a Higgs decay) + ~25 extra "bad" minimum bias interactions 4

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

25 min bias events overlap

- H→ZZ
 (Z →μμ)
- H→ 4 muons: the cleanest ("golden") signature

And this (not the H though...) repeats every 25 ns...

The challenge

Interactions every 25 ns ... In 25 ns particles travel 7.5 m

Pile-up

• "In-time" pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need "bunch-crossing identification"

Physics Selection @ LHC

The Challenge @ LHC

The Challenge

The Solution

Process	σ (nb)	Production rates (Hz)	
Inelastic	~10 ⁸	∼ 10 ⁹	
$b\overline{b}$	5×10 ⁵	5×10 ⁶	
$W \rightarrow \ell \nu$	15	100	
$Z \rightarrow \ell \ell$	2	20	
tī	1	10	
<i>H</i> (100 GeV)	0.05	0.1	
$Z'(1{ m TeV})$	0.05	0.1	
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1	
<i>H</i> (500 GeV)	10 ⁻³	10 ⁻²	

The Trigger

The Challenge

The Solution

Process	σ (nb)	Production rates (Hz)	
Inelastic	~10 ⁸	~10 ⁹	
$b\overline{b}$	5×10 ⁵	5×10 ⁶	
$W \rightarrow \ell \nu$	15	100	
$Z \rightarrow \ell \ell$	2	20	
tt	1	10	
<i>H</i> (100 GeV)	0.05	0.1	
$Z'(1 \mathrm{TeV})$	0.05	0.1	
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1	
<i>H</i> (500 GeV)	10 ⁻³	10 ⁻²	

Trigger/DAQ challenges @ LHC

- # of channel ~ O(10⁷). ~25 interactions every 25ns
 - Need large number of connections
 - Need information super-highway
- Calorimeter information should correspond to tracker information
 - Need to synchronize detectors to better than 25ns
- Sometimes detector signal/time of flight > 25ns
 - Integrate information from more than one bunch crossing
 - Need to correctly identify bunch crossing
- Can store data at O(100 Hz)
 - Need to reject most events
- Selection is done Online in real-time
 - Cannot go back and recover events
 - Need to monitor selection

Trigger/DAQ Challenges

Challenges:

1 GHz of Input Interactions

Beam-crossing every 25 ns with ~ 25 interactions produces over 1 MB of data

Archival Storage at about 300 Hz of 1 MB events

Triggering

Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

 Detector data not (all) promptly available
 Selection function highly complex
 ⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS (possibly with zero dead time)

General trigger strategy

Needed: An efficient selection mechanism capable of selecting interesting events - this is the **TRIGGER**

"Needle in a haystack"

General strategy:

- System should be as inclusive as possible
- Robust
- Redundant
- Need high efficiency for selecting interesting processes for physics:
 - selection should not have biases that affect physics results
 - (understand biases in order to isolate and correct them)
- Need large reduction of rate from unwanted high-rate processes
 - instrumental background
 - high-rate physics processes that are not relevant (min. bias)

This complicated process involves a multi-level trigger system...

Multi-level trigger systems

- L1 trigger:
 - Selects 1 out of 10000 (max. output rate ~100kHz)
- This is NOT enough
 - Typical ATLAS and CMS event size is 1MB
 - 1MB x 100 kHz = 100 GB/s!
- What is the amount of data we can reasonably store these days ?
 - 100 MB/s
- ⇒ Additional trigger levels are needed to reduce the fraction of "less interesting" events before writing to permanent storage

Multi-tiered trigger systems

Level-1 trigger: Integral part of all trigger systems – always exists reduces rate to ~50-100kHz.

Upstream: further reduction needed – typically done in 1 or 2 steps

16

A multi-tiered Trigger System

Traditional 3-tiered system

LHC Trigger Levels

Collision rate 10⁹ Hz

Channel data sampling at 40 MHz

Level-1 selected events 10⁵ Hz

Particle identification (High $p_{T} e, \mu$, jets, missing E_{T})

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

Level-2 selected events 10³ Hz

Clean particle signature (Z, W, ..)

- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching

Level-3 events to tape 100-300 Hz Physics process identification

· Event reconstruction and analysis

Three-tiered system

Additional processing at Level-2: reduce bandwidth requirements

Two-tiered system

Two-level processing:

- Reduce number of building blocks
- Rely on commercial components for processing and communication

40 MHz 10⁵ Hz 1000 Gb/s

10² Hz

Comparison

- Three physical entities
 - Invest in
 - Control logic
 - Specialized processors

- Two physical entities
 - Invest in
 - Bandwidth
 - Commercial processors

LHC Trigger/DAQ Summary

Trigger/DAQ systems

Trigger & DAQ at LHC

Processing LHC Data

Level-1 algorithms

- Physics concerns:
 - pp collisions produce mainly low pT hadrons with pT ~ 1 GeV
 - Interesting physics has particles with large transverse momentum
 - − W->ev : M(W) = 80 GeVI pT (e) ~ 30-40 GeV
 - − H(120 GeV) \rightarrow γγ ; pT(γγ) ~ 50-60 GeV
- Requirements
 - Impose high thresholds
 - Implies distinguishing particles
 - possible for electrons, muons and jets; beyond that need complex algorithms
 - Some typical thresholds:
 - Single muon with pt > 20 GeV
 - Single e/γ with pT > 30 GeV
 - Single jet with pT > 30 GeV

Level 1 Trigger Operation

Level 1 Trigger Organization

Trigger Timing & Control

Detector Timing Adjustments

- Detector pulse w/ collision at IP
- Trigger data w/ readout data
- Different detector trigger data w/each other
- **Bunch Crossing** Number
- Level 1 Accept Number

Synchronization Techniques

2835 out of 3564 p bunches are full, use this pattern:

Particle signatures

ATLAS & CMS Level 1: Only Calorimeter & Muon

High Occupancy in high granularity tracking detectors

ATLAS Trigger/DAQ Architecture

ATLAS Trigger Architecture

- LVL1 decision made with <u>calorimeter</u> data with coarse granularity and <u>muon trigger</u> <u>chambers</u> data.
 - Buffering on detector
- LVL2 uses <u>Region of Interest</u> <u>data</u> (~2%) with full granularity and combines information from all detectors; performs fast rejection.
 - Buffering in ROBs
- EventFilter refines the selection, can perform event reconstruction at full granularity using latest alignment and calibration data.
 - Buffering in EB & EF

Level1 - Muons & Calorimetry

Muon Trigger looking for coincidences in muon trigger chambers 2 out of 3 (low-p_T; >6 GeV) and 3 out of 3 (high-p_T; > 20 GeV)

Trigger efficiency 99% (low-p_T) and 98% (high-p_T)

Calorimeter Trigger looking for e/γ/t + jets

- Various combinations of cluster sums and isolation criteria
- $\Sigma E_T^{em,had}$, E_T^{miss}

ATLAS L1 Cal. Trigger data-flow

- On-detector:
 - Analog sums to form trigger towers (trigger primitives)
- Off-detector:
 - Receive data, digitize, identify bunch crossing, compute ET
 - Send data to cluster processer and jet energy processor
- Local processor crates
 - form sums, comparisons as per algorithm, decide on objects found
- Global Trigger: decision

Level-1 Calorimeter Trigger Architecture

ATLAS L1 Trigger

Rol Mechanism

• Level-1 triggers on high p_T objects

- Calorimeter cells and muon chambers to find $e/\gamma/\tau$ -jet/ μ candidates above thresholds

- Level-2 uses Regions of Interest as identified by Level-1
 - Local data reconstruction, analysis,
 and sub-datastar matching.

and sub-detector matching of Rol data

- The total amount of RoI data is minimal
 - ~2% of the Level-1 throughput but it has to be extracted from the rest at 75 kHz

CMS Trigger Levels

CMS Level-1 Trigger & DAQ

• Overall Trigger & DAQ Architecture: 2 Levels:

CMS Calorimeter Geometry

1 trigger tower (.087 η x .087 ϕ) = 5 x 5 ECAL xtals = 1 HCAL tower

ECAL Endcap Geometry

• Map non-projective x-y trigger crystal geometry onto projective trigger towers:

Calorimeter Trigger Processing

ECAL Trigger Primitives

In the trigger path, **digital filtering** followed by a **peak finder** is applied to energy sums (L1 Filter)

Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)

Test beam results (45 MeV per xtal):

CMS Electron/y Algorithm

CMS τ / Jet Algorithm

• 12x12 trigger tower E_{τ} sums in 4x4 region steps with central region > others

• Larger trigger towers in HF but ~ same jet region size, 1.5 η x 1.0 ϕ τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5

• Redefine jet as τ jet if none of the nine 4x4 region $\tau\text{-veto}$ bits are on Output

Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

H_T Trigger

- Total scalar E_T integrates too much noise and is not easily calibrated
 - At L1 tower-by-tower E_T calibration is not available
- However, jet calibration is available as function of (E_T, η, φ)
- Therefore, H_T which is the sum of scalar E_T of all high E_T objects in the event is more useful for heavy particle discovery/study
 - SUSY sparticles
 - Тор

Level-1 Trigger Rates: Trigger cuts determine the physics reach

- Efficiency for $H \rightarrow \gamma \gamma$ and $H \rightarrow 4$ leptons = >90% (in fiducial volume of detector)
- Efficiency for WH and ttH production with $W \rightarrow I_V = -85\%$
- Efficiency for qqH with $H \rightarrow \tau \tau$ ($\tau \rightarrow 1/3$ prong hadronic) = ~75%
- Efficiency for qqH with H→invisible or H→bb = ~40-50%

CMS Level-1 Muon Trigger

- Level-1 muon trigger info is obtained from:
 - Dedicated trigger detector (Resistive paralle plate chambers: RPC)
 - Excellent time resolution
 - Muon chambers with accurate position resolution
 - Drift Tubes (DT) in barrel
 - Cathode Strip Chambers (CSC) in endcaps
 - Bending in magnetic field =>
 - Determine pT
 - And cut on it

 $p_t = 3.5, 4.0, 4.5, 6.0 \text{ GeV}$

Muon Trigger Overview

CMS Muon Trigger Primitives

DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p_t value

CMS Muon Trigger

Drift Tubes (DT)

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Sort based on P_{τ} ,

Quality - keep loc.

Combine at next level match

Top 4 highest P_T and quality muons with

Hit strips of 6 layers form a vector Ocation coord.

Match with RPC Improve efficiency and quality

L1 single & di-muon trigger rates

Global Trigger

- A very large OR-AND network which allows specification of complex conditions:
 - 1 electron with pT > 20 GeV OR 2 electrons with pT > 14 GeV OR 1 electron with pT > 12 GeV AND 1 jet with pT > 40 GeV
 - The top-level logic requirements (1 electron + 1 jet for eg.) constitute a "Trigger table"
 - Allocating rates to different trigger conditions is a complex process that requires optimization of physics efficiencies versus backgrounds, rates and machine conditions
 - More on this in the next lecture

CMS Global Trigger

Input:

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- •4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - -All above include location in η and ϕ
- Missing E_{T} & Total E_{T}

Output

L1 Accept from combinations & proximity of above

Global L1 Trigger Algorithms

Particle Conditions

1⁺(1)

μ⁻(2)

 $p_T(1) > p_T(1)$ ^{threshold}

 $p_T(2) > p_T(2)^{\text{threshold}}$

 $170^{\circ} \le |\phi(1) - \phi(2)| < 190^{\circ}$ ISO(1) = 1, ISO(2) = 1

MIP(1) = 1, MIP(2) = 1

SGN(1) = 1, SGN(2) = -1

 $0^{\circ} \le \phi(1) < 360^{\circ}$ $0^{\circ} \le \phi(2) < 360^{\circ}$

Logical Combinations

Example Level-1 Trigger Table (DAQ TDR: L=2

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
Isolated e/γ	29	3.3	3.3
Di-e/γ	17	1.3	4.3
Isolated muon	14	2.7	7.0
Di-muon	3	0.9	7.9
Single tau-jet	86	2.2	10.1
Di-tau-jet	59	1.0	10.9
1-jet, 3-jet, 4-jet	177, 86, 70	3.0	12.5
Jet*E _T ^{miss}	88*46	2.3	14.3
Electron*jet	21*45	0.8	15.1
Min-bias		0.9	16.0
TOTAL			16.0

× 3 safety factor \Rightarrow 50 kHz (expected start-up DAQ bandwidth) Only muon trigger has low enough threshold for B-physics (aka $B_s \rightarrow \mu\mu$)

LHCb Trigger

LHCb Trigger Levels

- First level trigger : here called Level-0
 - Selects high pT particles (muons, egamma...)
 - Reduces input rate of 10MHz to 1.1 MHz
 - Custom boards
- Followed by two software-based trigger levels
- Level-1
 - uses reduced data set: only part of the sub-detectors (mostly Vertexdetector and some tracking) with limited-precision data
 - has a limited latency, because data need to be buffered in the front-end electronics
 - reduces event rate from 1.1 MHz to 40 kHz, by selecting events with displaced secondary vertices
- High Level Trigger (HLT)
 - uses all detector information
 - reduces event rate from 40 kHz to 200 Hz for permanent storage

ALICE Implementation

- Heavy ions runs
 - L=10²⁷ cm⁻²s⁻¹
 - Interaction rate < 10 kHz
 - Very high multiplicity and huge events size (~50MB)
 - Modest requirements on lower level triggers
- pp (or pA) runs
 - Interaction rate up to 200kHz
 - Small event size (~2MB)
 - Strong requirements on lower level triggers
- To accommodate all the different running conditions, the first level trigger is split in 3 distinct levels
 - L0, L1 and L2

Summary

- LHC : a very challenging environment
 - Interaction rate and selectivity
 - Number of channels and synchronization
 - Pile-up and bunch-crossing identification
 - Making a decision to accept/reject an event given ~3ms
- Trigger level: set of successive approximations
 - Number of physical levels varies with experiment/architecture
- Level-1 is always present and is responsible for reducing the rate to acceptable values (< 100kHz) for processing by the (more precise) High Level Trigger

ATLAS Technical Design Reports: http://atlas.web.cern.ch/Atlas/internal/tdr.html

CMS Trigger Technical Design Report: http://cmsdoc.cern.ch/cms/TDR/TRIGGER-public/trigger.html

P. Sphicas: <u>http://indico.cern.ch/conferenceDisplay.py?confld=a032525</u>

W. Smith:

http://indico.fnal.gov/materialDisplay.py?contribId=8&sessionId=22&materialId=slides&confId=1965