LHC Physics GRS PY 898 B8

Lecture #5

Tulika Bose

Trigger Menus, Detector Commissioning

Trigger Menus

Need to address the following questions:

- What to save permanently on mass storage?
 - Which trigger streams should be created?
 - What is the bandwidth allocated to each stream?
 - (Usually the bandwidth depends on the status of the experiment and its physics priorities)
- What selection criteria to apply ?
 - Inclusive triggers (to cover major known or unknown physics channels)
 - Exclusive triggers (to extend the physics potential of certain analyses say b-physics)
 - Prescaled triggers, triggers for calibration & monitoring

General rule :

Trigger tables should be flexible, extensible (to different luminosities for eg.), and allow the discovery of unexpected physics.

Performance is a key factor too...

CMS HLT "Exercise"

- Most extensive study of the High-Level Trigger algorithms, software, rates, efficiencies and technical requirements
 - All algorithms developed, tested and run within the latest software fwk
 - Detector geometry simulated reflecting the most up-to-date understanding of detector layout
 - Reconstruction code based on offline code
 - > Assuming half of DAQ available, maximum L1 output: 50 kHz
 - Actual RAW data format expected from the CMS readout simulated
 - Code for data-unpacking deployed, included in all timing studies
 - Deployment of Level-1 trigger emulator
 - Realistic set of events input to HLT

@ L=10³² cm⁻² s⁻¹

CMS HLT "Exercise"

CMS Report (LHCC): "What is the CPU performance of the HLT?"

CERN-LHCC 2007-021

Focus:

- Compile strawman Trigger Menu that covers CMS needs
- Determine CPU-performance of HLT algorithms
 - Implementation of 2008 physics-run (14 TeV) trigger menu
- (Study motivated by the need to purchase the Filter Farm by end 2007)

HLT cpu time budget ~ 40ms/event †

 \Rightarrow Select events that are "interesting enough" and bring down rate as quickly as possible

† DAQ-TDR (Dec 02):
"In 2007, for a L1 accept rate of 50 kHz & 2000 CPUs we need an average processing time of 2000/50 kHz ~ 40 ms/evt"₄

CPU Performance

"Tails": Will eliminate with time-out mechanism

Auto-accept event if processing time exceeds e.g. 600 ms This saves significant time in MC (probably much more in real data)₅ + will keep events of "unexpected" nature

Do we trust the MC?

We trust some aspects of it; for the rest we take a conservative approach

- Safety factor of 3 in allocation of L1 bandwidth; only 17 kHz allocated to simulated channels – to account for:
 - Uncertainty in maximum DAQ bandwidth (especially at startup)
 - Input cross sections (especially QCD; Tevatron shows factors of ~2)
 - All that we have not simulated:
 - o beam conditions, noise spikes, other electronics correlations...
- Safety factor of 2 in HLT accept rate; only 150 Hz allocated to simulated channels - to account for
 - Uncertainties in cross sections (e.g. heavy-flavor cross section)
 - Uncertainties in simulation (e.g. rate for a jet faking an electron: experience from Tevatron experiments shows Monte Carlo reliable to within a factor 2)

Optimization work continues: Additional improvements have been incorporated recently

CMS L1 Trigger Rates

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)	
A_SingleMu3	3	1000	0.01 ± 0.00	
A_SingleMu5	5	1000	0.00 ± 0.00	
A_SingleMu7	7	1	1.11 ± 0.04	
A_SingleMu10	10	1	0.47 ± 0.03	
A_SingleMu14	14	1	0.18 ± 0.02	
A_SingleMu20	20	1	0.09 ± 0.01	
A_SingleMu25	25	1	0.06 ± 0.01	
A_SingleIsoEG5	5	10000	0.00 ± 0.00	
A_SingleIsoEG8	8	1000	0.01 ± 0.00	
A_SingleIsoEG10	10	100	0.04 ± 0.01	
A_SingleIsoEG12	12	1	2.47 ± 0.06	
A_SingleIsoEG15	15	1	1.10 ± 0.04	
A_SingleIsoEG20	20	1	0.32 ± 0.02	
A_SingleIsoEG25	25	1	0.14 ± 0.01	
A_SingleEG5	,5	10000	0.00 ± 0.00	
A_SingleEG8	8	1000	0.01 ± 0.00	
A_SingleEG10	10	100	0.04 ± 0.01	
A_SingleEG12	12	100	0.03 ± 0.01	
A_SingleEG15	15	1	1.51 ± 0.05	
A_SingleEG20	20	1	0.52 ± 0.03	
A_SingleEG25	25	1	0.25 ± 0.02	
A_SingleJet70	70	100	0.02 ± 0.01	
A_SingleJet100	100	1	0.43 ± 0.02	
A_SingleJet150	150	1	0.07 ± 0.01	
A_SingleJet200	200	1	0.02 ± 0.01	
A_SingleTauJet40	40	1000	0.02 ± 0.01	
A_SingleTauJet80	80	1	0.68 ± 0.03	
A_SingleTauJet100	100	1	0.20 ± 0.02	
A_HTT250	250	1	2.56 ± 0.06	
A_HTT300	300	1	0.65 ± 0.03	
A_HTT400	400	1	0.08 ± 0.01	

	L1 Trigger		Thres (Ge	shold eV)	Pr	escale	Ra (kl	ite Hz)
	A_HTT500			500		1	0.02	± 0.00
	A_ETM20			20		10000	0.00	± 0.00
	A_ETM30			30		1	5.69	± 0.09
	A_ETM40			40		1	0.40	± 0.02
	A_ETM50			50		1	0.05	± 0.01
	A_ETM60			60		1	0.01	± 0.00
	A_DoubleMu3			3		1	0.28	± 0.02
	A_DoubleIsoE	38		8		1	0.28	± 0.02
	A_DoubleIsoEG	510		10		1	0.08	± 0.01
	A_DoubleEG5			5		10000	0.00	± 0.00
	A_DoubleEG1	0		10		1	0.19	± 0.02
	A_DoubleEG1	5		15		1	0.05	± 0.01
	A_DoubleJet7	0		70		1	0.58	± 0.03
	A_DoubleJet100 A_DoubleTauJet20 A_DoubleTauJet30		100			1	0.11 ± 0.01	
			20			1000	0.02 ± 0.01	± 0.01
				30		100	0.08	± 0.01
	A_DoubleTauJet	t40		40		1	2.36	± 0.06
	A_Mu3_IsoEG5	5		3,5		1	0.95 ± 0.04	
	A_Mu5_IsoEG1	0	5,10			1	0.04	± 0.01
	A_Mu3_EG12			3,12		1	0.09 ± 0.0	± 0.01
	A_Mu3_Jet15	- 1		3,15		20	0.30	± 0.02
A_I	soEG10_Jet30	10	0,30	5	1	1.95 :	± 0.05	= 0.05
A_I	soEG10_Jet20	10	0,20		1	3.04 =	± 0.06	= 0.01
A_I	soEG10_Jet70	10	0,70		1	0.26 =	± 0.02	= 0.04
A_Isc	A_IsoEG10_TauJet20		0,20		1	1.95 ± 0.05		: 0.03
A_Isc	A_IsoEG10_TauJet30		0,30		1	1.33 :	± 0.04	= 0.02
A_Ta	A_TauJet30_ETM30		30,30		1	$1.96 \pm 0.05 \pm 0.05$		= 0.01
A_Ta	A_TauJet30_ETM40		30,40		1 0.26		± 0.02	
A	A_TripleMu3		3		1 0.01		± 0.00	
A	_QuadJet30		30		1	0.58 :	± 0.03	
A_M	inBias_HTT10		10	lar	ge		0.40	-
1	A_ZeroBias		0 1		ge		0.40	1
	Total L1 Trigger Rate (kHz)					16.67 :	± 0.15	

High Level Trigger Menu

	HLT path	path L1 condition Inresholds HLT Kate (GeV) (Hz)		L1 condition Inresholds HLI Kate (GeV) (Hz)		Iotal Rate (Hz)		
S S D	HLT path		L1 condition		Thresholds (GeV)		HLT Rate (Hz)	Total Rate (Hz)
	VBF Double-Je	$t + E_T$	A_ETM30		(40, 60)		0.2 ± 0.0	89.0
6	SUSY 2-jet+	SUSY 2-jet+ET		A_ETM30		0,20,60)	2.0 ± 0.1	90.4
	Acopl. Double-J	A copl. Double-Jet + E_T		A_ETM30		(60, 60)	1.0 ± 0.0	90.4
	Single Isolat	ed e	A_Single1	IsoEG12		15	17.1 ± 2.3	107.5
3	Single Relax	ed e	A_Singl	eEG15		17	9.6 ± 1.3	109.3
	Double Isola	ted e	A_Double	IsoEG8		10	0.2 ± 0.1	109.4
- I	Double Relay	xed e	A_Doubl	eEG10		12	0.8 ± 0.1	109.9
Sal	Single Isolat	ed γ	A_Single1	IsoEG12	(30	8.4 ± 0.7	118.1
	Single Relax	ed γ	A_Singl	eEG15		40	2.8 ± 0.2	118.5
	Double Isola	ted γ	A_Double	IsoEG8		(20,20)	0.6 ± 0.4	119.0
	Double Relay	$\operatorname{ced} \gamma$	A_Doub1	eEG10	-	(20,20)	1.8 ± 0.5	120.1
1	High E_T	e	A_Singl	eEG15		80	0.5 ± 0.0	120.4
	High E_T	e	A_Singl	eEG15		200	0.1 ± 0.0	120.4
1	Lifetime b-tag	g 1-jet	0			180	1.3 ± 0.0	120.5
-	Lifetime b-tag	2-jets	0			120	2.1 ± 0.0	121.2
	Lifetime b-tag	3-jets	0		70		1.7 ± 0.0	121.8
	Lifetime b-tag	4-jets	0		40		1.8 ± 0.0	122.6
	Lifetime b-tag	g H _T	0		470		2.5 ± 0.1	123.1
<u> </u>	Single τ		A_SingleTauJet80		15		0.2 ± 0.0	123.2
	$\tau + E_T$		A_TauJet30_ETIM30		15		1.8 ± 0.2	124.7
	Double τ (Calo	+Pixel)	A_DoubleTauJet40		15		4.9 ± 0.6	129.4
	e + b-jet		A_IsoEG10_Jet20		(10, 35)		0.1 ± 0.0	129.4
1.1.2	e + jet		A_IsoEG10_Jet30 A_IsoEG10_TauJet20 See Table		(12, 40) (12, 20) • 3.9		11.6 ± 1.2	135.8
<u> </u>	$e + \tau$						0.2 ± 0.0	135.8
	Prescaled e	17					5.0 ± 0.0	140.8
8	Prescaled	μ	See Table		2.4		3.0 ± 0.0	143.8
	Min.Bias		A_MinBia:	s_HTT10	-		1.5 ± 0.0	145.3
	Pixel Min.B	lias	A_ZeroBias		· · · · · · · · · · · · · · · · · · ·		1.5 ± 0.0	146.8
	Zero Bias	5	A_Zero	Bias			- 1.0 ± 0.0	
			Total H	LT rate (Hz))			148 ± 4.9
A		A_Dot	ubleJet70					
Acop	l. Single-Jet + ₽ _T	A	_ЕТМЗО	(100, 60))	1.6 ± 0.0	84.2	
Si	ingle-Jet + E_T	A	A_ETM30 (180, 6))	2.2 ± 0.1	84.4	
Do	ouble-Jet + E_T	A	A_ETM30 (125, 6		(0) 1.0 ± 0.0		84.4	
h	Triple-Jet + $\not\!$		LETM30 (60, 60)	0.6 ± 0.0	84.4	
Q	Quad-Jet + E_T A		4_ETM30 (35, 60		(5) 1.2 ± 0.1		84.6	
Sing	$\mu T + \mu T$ le let Prescale 10	A.	m11300	(350, 65	$\frac{4.4 \pm 0.1}{35 \pm 0.0}$		00.2 87.0	
Singl	e let Prescale 100	A Str	ngleveriou	110	5.5±0.0		89.1	6
Single	e Jet Prescale 1000	ASi	ngleJet30 60		0.8 ± 0.4		89.9	<u>س</u> ا
			Continued on ne	ext page	1			

- µ: 50 Hz
- eγ: 30 Hz
- jets/MET/Ht: 30 Hz
- τ: 7 Hz
- b-jets: 10 Hz
- x-channels: 20 Hz
- prescaled: 15 Hz
- Total: 150 Hz

- Leptons: "bread & butter" triggers for many physics analyses
- Prescaled triggers should
- accompany every physics trigger

 $C L=10^{32} cm^{-2} s^{-1}$

CMS Trigger Efficiencies

Sig	nal	HLT Single	Relaxe	a HLT	Double	HLT	Single	[sola	ated	(Level-1)*HLT			
		muon e	ff.(%)	muo	<u>n eff</u> .(%)	n	nuon ef	E.(%))	acceptar	nce (%)			
Z –	$\rightarrow \mu\mu$	98.0	5		91.2		95.8			98.	.1		Muons	
W	$\rightarrow \mu \nu$	86.9	$\tilde{\mathcal{N}}$		-		81.4			76.	.7			
HI	T eff	iciency fo	r benc	hmark	chan	nels								
	[Isolate	d Rela	ved Is	olated	Relay	be						
	Signal	process	single		rlo d	ouble	doub	lo					T 1 (1
	Signa	I process	electro		ron el	ectron	electr						Electrons	
	шт	7	electro		2	62.9	64.4	л						
		$Z \rightarrow ee$ $W \rightarrow eu$	63.5	< 00 61	2	03.0	04.4	ノ						
		$W \rightarrow e\nu$	02.5 90.0		.2	-	62.2							
		LI: $\Sigma \rightarrow ee$	52.1	52	.0	62.6	03.2							
	LIII	L1: $W \rightarrow e\nu$	52.1	52	.4	-	-							
				Isolated	d Rela	xed I	solated	Re	elaxed	1			Photons	
Signal	l proces	ss		single	sing	gle 🛛 🤇	double	d	ouble					
				photor	1 pho	ton j	photon	p	hoton	L				
HLT:	$H \rightarrow \gamma'$	$\gamma(m_H=120 \text{ GeV})$	eV)	80.5	76	8 🤇	75.8		75.7					
L1*HI	LT: H –	$\rightarrow \gamma \gamma (m_H = 120)$) GeV)	78.8	76	8	75.8		75.7					
<i>C</i> :	1			1 1 . 1	0: 1	1.	1 7	. 1	1				an di data a	
Sign	al proc	ess	sing	le high	Single	very hi	ign Io	tal		Hl	$gn-E_T$	EM C	andidates	
			ene	rgy EM	enei	gy EM		_	(a	upply high	$gh E_T cu$	ıts, loo	sen-up isolation	ı)
Z' -	$\rightarrow ee (M$	$l \ge 200 \text{ GeV}$		67		7.0	6	7						
Z' -	$\rightarrow ee (M$	$t \ge 500 \text{GeV}$		91		69	9	3						
Z' -	$\rightarrow ee (M$	$t \ge 1000 \text{ GeV}$	2	94		92	9	8		G	hood W	$V/Z e^{-1}$	fficiencies	
Z' -	$\rightarrow ee (M$	$t \ge 2000 \text{ GeV}$	2	90	(97	9	8						
G -	$\rightarrow \gamma \gamma \ (M$	$l \geq 2000 \text{ GeV}$)	91		97	9	8]		r muoi	n, ega	amma HLT 9)

Lepton thresholds/efficiencies

HLT trigger path	E_T threshold (GeV)
Single isolated electron	15
Single relaxed electron	17
Double isolated electron	10
Double relaxed electron	12
Single isolated photon	30
Single relaxed photon	40
Double isolated photon	20
Double relaxed photon	20
Single high energy EM	80
Single very high energy EM	200

Efficiency of "e60" trigger Vs electron p_T based on a sample of 500 GeV RS $G \rightarrow ee$

Signal process	single high	Single very high	Total				
	energy EM	energy EM					
$Z' \rightarrow ee \ (M \ge 200 \text{ GeV})$	67	7.0	67				
$Z' \rightarrow ee \ (M \ge 500 \text{ GeV})$	91	69	93				
$Z' \rightarrow ee \ (M \ge 1000 \text{ GeV})$	94	92	98				
$Z' \rightarrow ee \ (M \ge 2000 \text{ GeV})$	90	97	98				
$G \rightarrow \gamma \gamma ~(M \ge 2000 { m ~GeV})$	91	97	98				

(1 1

10

Trigger Links

- ATLAS Trigger Menu Page: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/</u> <u>TriggerPhysicsMenu</u>
- ATLAS Trigger Naming Scheme: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/</u> <u>TriggerMenuConvention</u>
- CMS Trigger Studies Page: <u>https://twiki.cern.ch/twiki/bin/view/CMS/</u> <u>TriggerStudies</u>
- CMS Scheme: <u>https://twiki.cern.ch/twiki/bin/view/CMS/</u> <u>TriggerNames</u>

ATLAS Trigger Menus

<u>https://twiki.cern.ch/twiki/bin/view/</u> <u>Atlas/TriggerPhysicsMenu</u>

Criteria for startup menus

- Find simplest menus to fill reasonable bandwidth
- Use low pT thresholds + prescaled triggers + prescale for monitoring
- Use high pT thresholds + HLT pass-through (where possible)
- Don't rely on tight shape or isolation criteria

@ L=10³¹ cm⁻² s⁻¹

http://www-hep.uta.edu/~brandta/ATLAS/Rates/cumul-10TeV-1031-14503.pdf

L1 Naming Convention:

- · EM : electromagnetic object (electron or photon)
- TAU : tau objects
- XE : missing ET
- MU : muon
- J : jet
- FJ : forward jet (jet in FCAL calorimeter)
- BJT15 : jets to be used by B-physics triggers
- SM : sum Jet trigger
- · ET : Et sum trigger

L1 Overview

r

*Sum of each group's rate, including overlaps

L1 EM items

Major users are 2EM3, EM7, 2EM3_EM7

EF Overview

Streams, 10³²

Triggering on the unexpected

How does one trigger on the unknown?

General Strategy

Start by looking at various physics signals/signatures...

What are the main backgrounds?

Design a trigger using the above info

Estimate rates and efficiencies

Recognizing physics

Object	High E _⊤ Leptons	High E_T Jets	Missing E_{T}	Displ. Vertices
Bgrd QCD	rare	low E	all visible	rare
W/Z	>	 Image: A set of the set of the	W	
pp→bb	low E		_	 Image: A second s
b→J/ψK _s	J/ψ <i>→I</i> + <i>I</i> -	—	_	\checkmark
Top t→bW	✓	 Image: A start of the start of	√	1
Higgs pp→hW/Z h →bb				 Image: A set of the set of the
W'	<i>✓</i>	 ✓ 	✓	1

 $p\overline{p} \rightarrow t\overline{t} \rightarrow \ell \nu b\overline{b}jj$ jet b b iet Ares

"Alternatives" signatures

- 1) Di-lepton, di-jet, di-photon resonances
 - Z' (leptons, jets),
 - RS Extra dimensions (leptons, photons, jets)
 - Z_{KK} in TeV⁻¹
 - heavy neutrino from right-handed W (di-lepton + di-jets)

3) Single photon + missing E_{T}

ADD direct graviton emission

"Alternatives" signatures

5) (a) Multi-lepton + multi-jet

Technicolor, littlest Higgs, universal extra dimensions

"Alternatives" signatures

- 5) Same sign di-leptons
 - same-sign top
- 8) Black Holes
 - High multiplicity events, jets/lepton ratio of 5:1

<u>Having robust lepton and jets triggers will be crucial !</u> (Cross-channel triggers like leptons + jets v. important too.)

(NOTE:

Many BSM signatures involve 3^{rd} generation particles: b's and τ and also MET Though challenging, triggers for these need to be commissioned at the same time)

Trigger Summary

- Triggering at the LHC is a real challenge
- Sophisticated multi-tiered trigger systems have been designed by ATLAS and CMS
- Trigger menus for early physics runs are being laid out
 - Tools are in place and strategies are being optimized
- These strategies cover final states predicted by most BSM models
- Perhaps the most important strategy? KEEP AN OPEN MIND!

Trigger: A tricky business

in the small fraction of selected events?

Last Resort Trigger

- General trigger strategies work, but what if an object fails "standard quality" cuts ?
 - More likely to happen at the HLT, as L1 quality requirements are, in general, fairly loose

• Examples:

- Electron/photons with large impact parameter resulting in a "funny" cluster profile
- Events with abnormally high multiplicity of relatively soft objects
- b-tagged jets with extremely large impact parameter
- Funny tracking patterns in roads defined by L1 candidates
- Abnormally large fraction of L1 triggers fired with no HLT triggers to pass
- Abnormal density of tracks within HLT roads

- ...

Last Resort Trigger

- Proposal:
 - Take advantage of the sequential nature of HLT processing
 - Let individual HLT paths set a "weirdness flag" when the event fails the trigger, but in the process something in the event is found to look fairly strange (e.g., one of the cuts is failed by a very large margin)
- Run the "Last Resort" HLT filter as the last one in the path
 - Try to rescue these weird events by analyzing "weirdness flags" set by individual paths and/or based on global event properties
 - Forcefully accepts the event if several such flags are set
 - Accepts the event if large number of L1 triggers is fired...
 - Cuts designed to keep very low output rate («1Hz)
- The LRT could allow for an early warning system for "weird" events, which may indicate hardware failure or interesting, exotic physics
 - Designated triggers can then be developed for particular exotic signatures found by the LRT without compromising taking these data

Detector Commissioning

Detector Commissioning Exercises

- In Fall 2006 we had the first magnet test and data-taking with a slice of the experiment for about 2 months
- Since May 2007, periodic exercises of 3-10 days have been devoted to global commissioning exercises with installed detectors and electronics <u>underground</u>, ultimately using final power/cooling in the underground experiment cavern and the service cavern
 - Balancing the need to continue installation and local commissioning activities with the need for global system tests
- The incremental goals from one run to the next focus on increased complexity and increased scale.
- Frequency of runs increased as we headed to LHC start-up, where CMS ultimately became a 24/7 running experiment ready for beam

CMS commissioning overview

CMS dictionary:

- **CSA C**omputing, **S**oftware and **A**nalysis challenge
- CCRC Common Computing Readiness Challenges
- MTCC Magnet Test and Cosmic Challenge
- CRUZET Cosmic RUn at Zero Tesla

CMS Systems in Global Runs

Significant Datasets (cosmics)

CMS Global Runs

CRUZET4

- First Global run with final CMS configuration
- Going from 80% to 100% of CMS was not a trivial step: first 4 days spent in understanding instabilities.
- Last 3 days saw all of CMS (including newcomers like EE and Pixels) accumulating data more stably
- Total of 38 M cosmic triggers logged, being analyzed.

Global Detector Readout

- Muon signals traced through
 - muon system
 - Strip Tracker (and pixels when close to beam pipe)
 - ECAL
 - HCAL
- Requires synchronization of all electronic signals
- Global track fit can be used for alignment and detector performance studies

Commissioning with Cosmics

Tracks passing through the ECAL

Tracks passing through the ECAL

Muon reconstruction at 3T

Tracks crossing the pixel tracking system

First cosmic tracks with Pixels

- Rate < 0.1 Hz
- Need a lot of data to align sensors
- But tracks going through the small pixel detector resemble those from collisions

Trigger Menu Commissioning

Focus of the last 6-8 months: commissioning using cosmics data Many invaluable lessons have been learned; Number of problems have been identified and fixed Range from:

memory footprint problems related to multiple output streams error messages being printed out when dealing with corrupt data infrequent crashes during unpacking of raw data non-optimal triggers

Lessons learned:

Should not put all 150 of these present HLT paths online for startup

- Many of these triggers are not relevant for all luminosities: 2E30/2E31/1E32
- Many triggers make assumptions (alignment, calibration, noise, isolation, multiplicities, etc) not yet validated with real data
- Many triggers suitable for 1E32 are known to be very inefficient at startup conditions (and only tuned to MC)
- It is unlikely that analyses based on startup data will be based on multiple triggers...focus on the ones we will use.
- Plan to start with something simple that is robust against startup uncertainties. Then deploy online additional triggers, as needed, after validating them on real data.

Trigger Menu Commissioning

Deployed a modified startup menu late last year:

- Min Bias triggers for calibration
- Single Object Triggers x 2 Thresholds
- Double Object Triggers x 2 Thresholds
- Use prescales to switch between menus for different luminosities

HLT ran without disrupting data-taking

Global runs have lasted > 24 hours!!

Trigger menu commissioning with startup menus is ongoing...