Advanced Analysis Methods

Review of talk given by Reinhard Schwienhorst and others
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Typical methods

* Cut-based event counting

 Peak 1n a characteristic distribution



Event counting

Apply cuts to variables o[ le: Z discovery at UA
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Peak 1n a characteristic distribution

: : Example: b-quark
Find a variable that has a smooth d}scox?ery at(i:emlﬂab

distribution for background
— Typically invariant mass

Measure this distribution over a B
large range of possible values

Look for possible resonance peaks

Sensitive to any resonance with
this final state

Background estimate for sidebands “H.”mll[
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Searches at the energy frontier

* Searches for new particles, phenomena, couplings

— Tevatron:

* Single top quark production
* Higgs boson search

LHC Higgs Sensitivity
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How to improve upon
Event Counting

And

Bump Hunting ?



Physics at the energy frontier

* Searches for new particles, phenomena, couplings
* First measurements of properties, couplings

* Multivariate techniques <> Adding more data

Making the most out of
small samples of events




Bayesian limit

* For each analysis, there exists a fully optimized
signal-background separation
— Target function, also called Bayes discriminant or Bayesian
limit LSk
L(B[x)
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Bayesian limit

* For each analysis, there exists a fully optimized
signal-background separation
— Target function, also called Bayes discriminant or Bayesian
limit | LSk)
L(B[x)

B(x)

* For a single discriminating variable, this ratio of
signal and background likelihoods 1s easy to calculate

— Monte Carlo procedure:
* Generate signal and background MC events
* Fill histograms for signal and background
* Divide the two histograms




Bayesian Limit

In case of more than one variable, this 1s not possible anymore

— Not enough MC statistics to compute an multi-dimensional
likelihood

— Histogram data in M bins in each of the d feature variables
e M¢ bins
— In high dimensions, we would either require a huge number

of data points or most of the bins would be empty leading
to an estimated density of zero.

Curse of dimensionality



Optimized event analysis

Optimize signal-background separation
- Exploit full event information
Optimized = Event kinematics, angular correlations, ...
Take all correlations into account

Goal: Reach the Bazesian limit |

* Requires detailed understanding of signal and background

— Only applicable to searches for a specific signal or
measurements of a specific process



Optimized event analysis

~ Optimize signal-background separation
- Exploit full event information
Optimized =< Event kinematics, angular correlations, ...
Take all correlations into account

—

Goal: Reach the Bazesian limit |

* Requires detailed understanding of signal and background

— Only applicable to searches for a specific signal or
measurements of a specific process

* Limited by background and signal modeling
— MC statistics, MC model, background composition, shape,

If signal model is wrong: search is not sensitive @
If back model is wrong: find something that isn't there ()



Event analysis techniques

Cut-Based Neural networks Decision trees Likelihood

= & I«

Boosted decision trees, Bayesian neural networks Matrix Elements
random forest '




Cut-based analysis

* Estimate background yield
* Compare to data

Nobsszata_NB

* Calculate signal acceptance
0= Ny, / (A*L)

Fingl Bvent Set




Decision Trees

* Machine-learning technique, widely used 1n the social
sciences

* Idea: recover events that fail criteria in cut-based analysis



Including events that fail a cut

— Create a tree of cuts

— Divide sample into
“pass” and “fail” sets

— Each node . corresponds
to a cut (branch)

» Start at first “node @i ° with “training sample” of 1/3 of all
signal and background events

m For each varnable, find splitting value with best separation
between two children (mostly signal in one, mostly
background in the other)

a Select vanable and splitting value with best separation to
produce two "branches —9 " with corresponding events,
(F)ailed and (P)assed cut



Trees and leafs

— Create a tree of cuts
— Divide sample into
“pass” and “fail” sets

— Each node . corresponds
to a cut (branch)

— A leaf corresponds to an
end-point

— For each leaf, calculate purity
(from MC):
purity = NJ/(Ngt+Np)

Repeat recursively on each node
Stop (terminate at leaf) when improvement stops or when too few events left



Decision tree output

* Train on signal and background models (MC)
— Stop and create leaf when Ny,~<100
* Compute purity value for each leaf

* Send data events through tree
— Assign purity value corresponding to the leaf to the event

* Result approximates a probability density distribution
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Decision tree output for each event = leaf purity
Closer to 1 for signal and closer to O for background

06
tb-Wbb DT output



Measure and Apply

@ Take trained tree and

. = DO Run Il Preliminary, 230pb ™
run on independent R S an e, =
. S 60 = t-channel ( <10)
simulated sample, E L M
. o > . W+jets
determine purities. L
@ Apply to Data 40$
@ Should see enhanced
separation (signal 20

right, background left)

@ Could cut on output

% 0.2 0.4 0.6 0.8 1
and measure, or use tqb-Wbb DT output
whole distribution to /
measure.
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Boosted Decision Trees

AdaBoost algorithm

@ Recent technique to improve o Adaptive boosting
performance of a weak @ Check which events are
classifier misclassified by T}

® Recently used on DTs by @ Derive tree weight o

GLAST and MiniBooNE

@ Basic principal on DT:

e train a tree Ty _ . .
o Tis1 = modify(Tk) | @ Train again to build Ty41

@ Boosted result of event i:
T(i) = Yonese o Ti(i)

@ Increase weight of
misclassified events

@ Averaging dilutes piecewise nature of DT

@ Usually improves performance



Object Kinematics
pr(jetl)
pr(jet2)
pr(jet3)
pr(jet4)
pr(bestl)
p1 (notbest1)
p1 (notbest2)
pr(tagl)
pr (untagl)
pr(untag2)

Angular Correlations
AR(jet1,jet2)
cos(best1,lepton)pesttop
cos(best1,notbestl) st top
cos(tagl,alljets) ) )jets
cos(tagl.lepton),taggedtop
cos(jetl,alljets)alljets
cos(jetl,lepton)ptaggedtop
cos(jet2,alljets) ))jets
cos(jet2,lepton)ptaggedtop
cos(lepton, Q(lepton) X z)hesttop
cos(lepton, beSttOPframe)besttopC Mframe
cos(lepton,btaggedtopframe) btaggedtopCMframe
cos(notbest,alljets) ,))jets
cos(notbest,lepton)esttop
cos(untagl,alljets) . ))jets

cos(untagl,lepton),taggedtop

Event Kinematics

Aplanarity(alljets, W)

M(W bestl) (“best” top mass)
M(W  tagl) (“b-tagged” top mass)
Hy (alljets)

H (alljets—best1)

Hr (alljets—tagl)

Hr (alljets, W) @ Adding
Hr(jetl,jet2) .

Hr (jet1 jet2, W) variables does
M(alljets)

M(alljets—best1)
M(alljets—tagl)

not degrade

M(jetL,jet2) performance
M(jetl,jet2, W)

M (jetl jet2) @ Tested shorter
My (W) .

Missing E7 lists, lose some

pr (alljets—best1)
pr(alljets—tagl)
pr(jetl,jet2)
Q(lepton) X n(untagl)
Vs

Sphericity(alljets, W)

sensitivity

@ Same list used
for all channels

B o*




Decision Tree Verification

» Use “mystery” ensembles with many different signal assumptions
» Measure signal cross section using decision tree outputs
» Compare measured cross sections to input ones

» Observe linear relation close to unit slope
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Random forest

Average over many
decision trees

— Typically O(100)
Each tree 1s grown using
m variables

— For N total variables, m<<N
Very fast algorithm

— Even with large number of variables
Very few parameters to adjust

— Typically only m




Neural Networks

Example Neural Network Mathematics of Neural Networks

Input Hidden Layer Output

* The activity of the input units represents the raw info that is fed into the network.

* The activity of each hidden unit is determined by the activities of the input units and
the weights on the connections between the input and the hidden units.

* The behavior of the output units depends on the activity of the hidden units and the

weights between the hidden and output units.



D Neural networks

Input Nodes: One for each variable x;

M, Get1 jet2) \

M (alljets)

Py (jet1 jet2)
P, (notbest2)
P, (notbest1)

cos(LQ(x 2) ...

M (W best)

M (W,tag1) Output Node: linear
combination of hidden nodes

AR (jet1 jet2) . N

e f(x) = Z Wi n(x,w,)

P, (tag1)

B S

Stemoid Hidden Nodes: Each is a sigmoid
dependent on the input variables




Neural Network Training

— Find optimum NN parameters
on training signal/background 50.75
events

— Apply NN to independent set
of signal and background 0.65

* Testing sample

Testing Error

I.I.l

0.7 Training Error

Minimum Testing Epoch

— Stop training when error from 0'65
testing sample starts 0.55}
increasing ;

* Overfitting 0 50 100 150 200 250

Epoch
D@ single top search



Approximation Approximation
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Figure 1. Polynomial interpolation of the function y =
sin(x/3) + v in the range 0 to 20 as the order of the model is
increased from 2 to 20. v is a uniformly distributed random vari-
able between -0.25 and 0.25. Significant overfitting can be seen
for orders 16 and 20.



Signal-Background Separation
using Bayesian Neural Networks

Neural networks use many input variables, train on signal
and background samples, produce one output discriminant

Bayesian neural networks improve on this technique:

= Average over many networks weighted by the
probability of each network given the training samples

= Less prone to over-training

= Network structure is less important — can use larger
numbers of variables and hidden nodes

For this analysis:

= 24 input variables (subset of 49 used by decision trees)
40 hidden nodes, 800 training iterations
Each iteration is the average of 20 training cycles

One network for each signal (tb+tgb, tb, tgb) in each of
the 12 analysis channels

Bayesian neural network verification with ensembles
shows good linearity, unit slope, near-zero intercept

% o102 o.ls 040800070809 1
Neotwork output

A Lasaal 1 Lasalas aaalaaaaley
0 0102030408080 70809% 1
Network output
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Matrix Element Analysis

A matrix elements analysis takes a very different approach:

@ Use the 4-vectors of all reconstructed leptons and jets

@ Use matrix elements of main signal and background diagrams to
compute an event probability density for signal and background
hypotheses.

@ Goal: calculate a discriminant:

P Signal ()_(’)
P Signal ()_( ) + P Background ()—6)

Ds(x) = P(S|X) =

@ Define Psjgna as properly normalized differential cross section
4 1 ﬂ. q
PSigna/(X) = EdUS(X) 0s = deS(X)

o Shared technology with mass measurement in tt(eg. transfer

functions) w
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ME analysis

Ensemble response s+t cross section [pb]
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Background efficiency

Summary

Random guess

'.'/
7

Neural networks,
simple decision
frees, etc

Boosted decision trees,
bayesian neural networks,
randomforests

0 Signal efficiency



Resources

PhyStat code repository
https://plone4.fnal.gov:4430/P0/phystat/

PhyStat 2007 conference
http://phystat-lhc.web.cern.ch/phystat-lhc/

Jim Linnemann's collection of statistics links:
http://www.pa.msu.edu/people/linnemann/stat_resources.html

Statistical analysis tool R

TMVA (multivariate analysis tools in root)
hitp://tmva.sourceforge.net/

Neural Networks in Hardware
http://neuralnets.web.cern.ch/NeuralNets/nnwInHep.html
Boosted Decision Trees in MiniBoone

htto://arxi abs/physics/0508045

Decision Tree Introduction

http://www statsoft.com/textbook/stcart.html

GLAST Decision Trees
http://scipp.ucsc.edu/~atwood/Talks%20Given/CPAforGLAST.ppt




Analysis Strategy

Discriminating . Multivariate Signal ‘ Statistical
variables Classifier Likelihood Analysis
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Event kinematics
Object kinematics
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Angular correlations

. Build Bayesian posterior probability
Classifiers density to measure cross section

Likelihood Function (LF) Shape normalization and systematics
Neural Network (NN) treated as nuisance parameters
Bayesian Neural Networks(BNN) Correlations between uncertainties
Boosted Decision Trees (BDT) properly accounted for

Matrix Element (ME) Flat prior in signal cross section




Statistical Analysis

Before looking at the data, we want to know two things:

» By how much can we expect to rule out a background-only hypothesis?

» Find what fraction of the ensemble of zero-signal pseudo-datasets give a cross
section at least as large as the SM value, the “expected p-value”

» For a Gaussian distribution, convert p-value to give “expected signficance”

» What precision should we expect for a measurement?

» Set value for “data” = SM signal + background in each discriminant bin (non-
integer) and measure central value and uncertainty on the “expected cross section”

With the data, we want to know:

» How well do we rule out the background-only hypothesis?

» Use the ensemble of zero-signal pseudo-datasets and find what fraction give a
cross section at least as large as the measured value, the "measured p-value”

= Convert p-value to give “measured signficance”

» What cross section do we measure?
= Use (integer) number of data events in each bin to obtain “measured cross section”

» How consistent is the measured cross section with the SM value?

» Find what fraction of the ensemble of SM-signal pseudo-datasets give a cross
section at least as large as the measured value to get “consistency with SM”



Cross Section Results
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Bayesian neural networks

Bayesian 1dea:

— Rather than finding one value for each weight,
determine the posterior probability for each weight

Form many networks by sampling from the posterior

Typical case: ~100 individual neural networks
— Each network gets a weight based on training performance

Avoids overfitting

But: very slow due to inte;
determine the posterior

pration required to



